Design, simulation, and validation of additively manufactured high-temperature combustion chambers for micro gas turbines
Additive manufacturing
Micro gas turbine
Combustion chamber
/dk/atira/pure/subjectarea/asjc/2100/2103; name=Fuel Technology
Reacting CFD
Inconel 625
02 engineering and technology
/dk/atira/pure/subjectarea/asjc/2100/2104; name=Nuclear Energy and Engineering
/dk/atira/pure/subjectarea/asjc/2100/2105; name=Renewable Energy, Sustainability and the Environment
7. Clean energy
/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy
0202 electrical engineering, electronic engineering, information engineering
/dk/atira/pure/subjectarea/asjc/2100/2102; name=Energy Engineering and Power Technology
DOI:
10.1016/j.enconman.2021.114805
Publication Date:
2021-10-05T19:10:52Z
AUTHORS (5)
ABSTRACT
Abstract The demand for cleaner, more efficient, and durable sources of electricity is driving research into small-scale power generation. Micro gas turbines are especially suitable by virtue of their high power density and reliability, but a major drawback is their poor overall efficiency due to increasing parasitic energy losses relative to net power output as size decreases. Additive manufacturing offers design freedoms that could enable higher efficiency and lower emission combustors for micro gas turbine applications. A novel conical radial swirl-stabilized tubular combustor with internal vane fuel injection is designed and tested, and a validated reacting computational fluid dynamics model is used to design novel combustor features that can only be additively manufactured. Of the five different concepts tested, those benefitting from additively manufactured features outperform the traditional design in terms of peak temperature control and fuel–air mixing, translating to striking reductions in pollutant emissions, with up to 75% and 40% reductions in nitrogen oxides and carbon monoxides, respectively, while concepts incorporating upstream fuelling and a three-row lattice show a near 20% increase in mixture quality. As well as evaluating a number of novel and very promising additively manufactured combustor design features, this work provides guidance on the incorporation of additively manufactured features in combustors for any gas turbine application and demonstrates the clear benefits of additive manufacturing for low-emission combustor design.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (44)
CITATIONS (24)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....