A calibration protocol for soil-crop models
Akaike information criterion
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_37938
F08 - Systèmes et modes de culture
télédétection
adaptation aux changements climatiques
modèle de simulation
modélisation des cultures
crop models
Weighted least squares
http://aims.fao.org/aos/agrovoc/c_9000024
modèle mathématique
http://aims.fao.org/aos/agrovoc/c_1374567058134
[SDV.EE]Life Sciences [q-bio]/Ecology
parameter selection
http://aims.fao.org/aos/agrovoc/c_3081
http://aims.fao.org/aos/agrovoc/c_1666
essai de variété
http://aims.fao.org/aos/agrovoc/c_6498
[SDV.EE]Life Sciences [q-bio]/Ecology, environment
http://aims.fao.org/aos/agrovoc/c_24199
changement climatique
Parameter selection
U10 - Informatique, mathématiques et statistiques
04 agricultural and veterinary sciences
http://aims.fao.org/aos/agrovoc/c_26833
weighted least squares
0401 agriculture, forestry, and fisheries
Crop models
environment
évaluation de l'impact
DOI:
10.1016/j.envsoft.2024.106147
Publication Date:
2024-07-17T23:58:14Z
AUTHORS (11)
ABSTRACT
AbstractProcess-based soil-crop models are widely used in agronomic research. They are major tools for evaluating climate change impact on crop production. Multi-model simulation studies show a wide diversity of results among models, implying that simulation results are very uncertain. A major path to improving simulation results is to propose improved calibration practices that are widely applicable. This study proposes an innovative generic calibration protocol. The two major innovations concern the treatment of multiple output variables and the choice of parameters to estimate, both of which are based on standard statistical procedure adapted to the particularities of soil-crop models. The protocol performed well in a challenging artificial-data test. The protocol is formulated so as to be applicable to a wide range of models and data sets. If widely adopted, it could substantially reduce model error and inter-model variability, and thus increase confidence in soil-crop model simulations.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (9)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....