Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna
Strombolian eruption
Effusive eruption
Lava dome
Lateral eruption
Fountain
Phreatic eruption
DOI:
10.1016/j.epsl.2014.12.038
Publication Date:
2015-01-19T17:15:23Z
AUTHORS (5)
ABSTRACT
In June–July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500 m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ∼1–2 km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2 and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2 ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2–6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June–July 2001 lava fountain sequence, the shallow (∼2 km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (42)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....