Transcriptomic profiling of human embryonic stem cells upon cell cycle manipulation during pluripotent state dissolution

0301 basic medicine Embryonic stem cells 03 medical and health sciences Differentiation Data in Brief Genetics QH426-470 Cell cycle Microarray
DOI: 10.1016/j.gdata.2015.08.032 Publication Date: 2015-08-31T17:31:30Z
ABSTRACT
While distinct cell cycle structures have been known to correlate with pluripotent or differentiated cell states [1], there is no evidence on how the cell cycle machinery directly contributes to human embryonic stem cell (hESC) pluripotency. We established a determinant role of cell cycle machineries on the pluripotent state by demonstrating that the specific perturbation of the S and G2 phases can prevent pluripotent state dissolution (PSD) [2]. Active mechanisms in these phases, such as the DNA damage checkpoint and Cyclin B1, promote the pluripotent state [2]. To understand the mechanisms behind the effect on PSD by these pathways in hESCs, we performed comprehensive gene expression analysis by time-course microarray experiments. From these datasets, we observed expression changes in genes involved in the TGFβ signaling pathway, which has a well-established role in hESC maintenance [3], [4], [5]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and can be accessed through GEO Series accession numbers GSE62062 and GSE63215.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (9)
CITATIONS (3)