Hippocampus, amygdala and global brain changes 10 years after childhood traumatic brain injury
Male
Brain Mapping
Adolescent
Infant
Amygdala
Hippocampus
Magnetic Resonance Imaging
3. Good health
03 medical and health sciences
0302 clinical medicine
Brain Injuries
Child, Preschool
Humans
Longitudinal Studies
Prospective Studies
Atrophy
Child
DOI:
10.1016/j.ijdevneu.2010.12.003
Publication Date:
2010-12-14T10:36:02Z
AUTHORS (8)
ABSTRACT
AbstractTraumatic brain injury (TBI) in children results in damage to the developing brain, particularly in severely injured individuals. Little is known, however, of the long‐term structural aspects of the brain following childhood TBI. This study investigated the integrity of the brain 10 years post‐TBI using magnetic resonance imaging volumetrics in a sample of 49 participants with mild, moderate and severe TBI, evaluated against a normative sample of 20 individuals from a pediatric database with comparable age and gender distribution. Structural integrity was investigated in gray and white matter, and by manually segmenting two regions of interest (hippocampus, amygdala), potentially vulnerable to the effects of childhood TBI. The results indicate that more severe injuries caused a reduction in gray and white brain matter, while all TBI severity levels resulted in increased volumes of cerebrospinal fluid and smaller hippocampal volumes. In addition, enlarged amygdala volumes were detected in severely injured patients compared to their mild and moderate counterparts, suggesting that childhood TBI may disrupt the development of certain brain regions through diffuse pathological changes. The findings highlight the lasting impact of childhood TBI on the brain and the importance of monitoring brain structure in the long‐term after early injury.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (79)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....