The effect of N-glycosylation of SARS-CoV-2 spike protein on the virus interaction with the host cell ACE2 receptor

0301 basic medicine 570 SITES Science & Technology Protein Science Q 610 Computer simulation Article L-SIGN 3. Good health Multidisciplinary Sciences 03 medical and health sciences Virology Science & Technology - Other Topics Structural biology
DOI: 10.1016/j.isci.2021.103272 Publication Date: 2021-10-14T02:15:10Z
ABSTRACT
The densely glycosylated spike (S) protein highly exposed on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) surface mediates host cell entry by binding to the receptor angiotensin-converting enzyme 2 (ACE2). However, the role of glycosylation has not been fully understood. In this study, we investigated the effect of different N-glycosylation of S1 protein on its binding to ACE2. Using real-time surface plasmon resonance assay the negative effects were demonstrated by the considerable increase of binding affinities of de-N-glycosylated S1 proteins produced from three different expression systems including baculovirus-insect, Chinese hamster ovarian and two variants of human embryonic kidney 293 cells. Molecular dynamic simulations of the S1 protein-ACE2 receptor complex revealed the steric hindrance and Coulombic repulsion effects of different types of N-glycans on the S1 protein interaction with ACE2. The results should contribute to future pathological studies of SARS-CoV-2 and therapeutic development of Covid-19, particularly using recombinant S1 proteins as models.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (23)
CITATIONS (26)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....