Vectorial and topologically valid segmentation of forestry road networks from ALS data
Road extraction
Environmental sciences
Physical geography
Vectorial layer
0211 other engineering and technologies
Forest road networks
GE1-350
02 engineering and technology
Airborne lidar
Least cost path
GB3-5030
DOI:
10.1016/j.jag.2023.103267
Publication Date:
2023-03-22T18:57:54Z
AUTHORS (5)
ABSTRACT
Accurate information on road location is critical for forest management and conservation strategies. Road location data supports the analysis of road accessibility and usability and is a critical information layer for forest harvest, financial planning, wildfire suppression, and protection activities. The global expanse of forests, their remoteness, and difficulty to access have necessitated the development of automatic or semi-automatic remote sensing methodologies to map roads using passive optical imagery or Airborne Laser Scanning (ALS). Conventional automatic road mapping methods are raster-based and map roads as patches of disconnected pixels. This paper addresses the limitations of raster-based automatic forest road extraction and presents a method for producing a topologically accurate vectorial road network. Our method, presented as a fully documented and open-source software tool, uses metrics derived from an ALS point cloud to produce a raster of road conductivity. From this conductivity raster, the method “drives” the roads iteratively by detecting and following road intersections. We demonstrate the method’s efficacy using a road network in Quebec, Canada, where 96% of the roads in a binary raster, and 84% using our probability map, are vectorized properly from an ALS point cloud with 4% false positives. Our proposed method may significantly reduce the training requirements of machine learning techniques used to classify roads by being very robust to false positive and false negative classifications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (32)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....