Impaired dynamic X-chromosome inactivation maintenance in T cells is a feature of spontaneous murine SLE that is exacerbated in female-biased models

Male B-Lymphocytes T-Lymphocytes Gene Dosage Autoimmunity Lymphocyte Activation Mice, Inbred C57BL Mice Disease Models, Animal Sex Factors X Chromosome Inactivation Animals Lupus Erythematosus, Systemic Humans Female RNA, Long Noncoding Protein Binding
DOI: 10.1016/j.jaut.2023.103084 Publication Date: 2023-07-01T15:18:26Z
ABSTRACT
Systemic lupus erythematosus (SLE) is a highly female-biased systemic autoimmune disease, but the molecular basis for this female bias remains incompletely elucidated. B and T lymphocytes from patients with SLE and female-biased mouse models of SLE exhibit features of epigenetic dysregulation on the X chromosome which may contribute to this strong female bias. We therefore examined the fidelity of dynamic X-chromosome inactivation maintenance (dXCIm) in the pathogenesis of two murine models of spontaneous lupus-NZM2328 and MRL/lpr-with disparate levels of female-bias to determine whether impaired dXCIm contributes to the female bias of disease.CD23+ B cells and CD3+ T cells were purified from age-matched C57BL/6 (B6), MRL/lpr, and NZM2328 male and female mice, activated in vitro, and processed for Xist RNA fluorescence in situ hybridization, H3K27me3 immunofluorescence imaging, qPCR, and RNA sequencing analyses.The dynamic relocalization of Xist RNA and the canonical heterochromatin mark, H3K27me3, to the inactive X chromosome was preserved in CD23+ B cells, but impaired in activated CD3+ T cells from the MRL/lpr model (p < 0.01 vs. B6), and even more impaired in the heavily female-biased NZM2328 model (p < 0.001 vs. B6; p < 0.05 vs. MRL/lpr). RNAseq of activated T cells from NZM2328 mice revealed the female-biased upregulation of 32 X-linked genes distributed broadly across the X chromosome, many of which have roles in immune function. Many genes encoding Xist RNA-interacting proteins were also differentially expressed and predominantly downregulated, which may account for the observed mislocalization of Xist RNA to the inactive X chromosome.Although evident in T cells from both the MRL/lpr and NZM2328 models of spontaneous SLE, impaired dXCIm is more severe in the heavily female-biased NZM2328 model. The aberrant X-linked gene dosage in female NZM2328 mice may contribute towards the development of female-biased immune responses in SLE-prone hosts. These findings provide important insights into the epigenetic mechanisms contributing to female-biased autoimmunity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (61)
CITATIONS (21)