The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons

Enteric Nervous System Synapsin I Biological neural network
DOI: 10.1016/j.jbc.2021.101300 Publication Date: 2021-10-11T13:58:50Z
ABSTRACT
Highly organized circuits of enteric neurons are required for the regulation gastrointestinal functions, such as peristaltism or migrating motor complex. However, factors and molecular mechanisms that regulate connectivity their assembly into functional neuronal networks largely unknown. A better understanding by which neurotrophic this neuron circuitry is paramount to nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, essential plasticity in brain, but so far its presence function ENS remain unexplored. Here we report EphB2 expressed preferentially relative glial cells throughout gut rats. We show primary neurons, activation natural ligand ephrinB2 engages ERK signaling pathways. Long-term with decreases expression reduces without affecting density, ganglionic fiber bundles, overall morphology. This highlighted loss markers synapsin I, PSD95, synaptophysin, decrease spontaneous miniature synaptic currents. Together, these data identify critical role reveal unique EphB2-mediated program synapse neurons. Assembly maintenance ganglia growth, guidance, axons dendrites necessary establishment fine-tuned neural (ENS). The consists complex network glia functions autonomously provide control major (1Furness J.B. neurogastroenterology.Nat. Rev. Gastroenterol. Hepatol. 2012; 9: 286-294Crossref PubMed Scopus (735) Google Scholar). arranged two plexus, i.e., submucosal myenteric plexus (2Wedel T. Roblick U. Gleiss J. Schiedeck Bruch H.P. Kuhnel W. Krammer H.J. Organization human colon demonstrated wholemount immunohistochemistry special reference submucous plexus.Ann. Anat. 1999; 181: 327-337Crossref (92) early developmental phases derived from crest (i.e., migration, proliferation, differentiation) have been extensively studied Scholar, 3Nagy N. Goldstein A.M. Enteric development: cell's journey tube colon.Semin. Cell Dev. Biol. 2017; 66: 94-106Crossref (77) Nevertheless, controlling axon molecules implicated processes poorly defined not only during development also adulthood. For instance, key proteins referred synaptic-associated (SAPs) PSD95 appear be crucial determinants fine-tuning transmission remodeling central (CNS). SAPs recognized play neurotransmitter release, vesicle trafficking) stabilization structures CNS (4Rosahl T.W. Spillane D. Missler M. Herz Selig D.K. Wolff J.R. Hammer R.E. Malenka R.C. Sudhof T.C. Essential synapsins I II regulation.Nature. 1995; 375: 488-493Crossref (606) 5Ehrlich I. Klein Rumpel S. Malinow R. PSD-95 activity-driven stabilization.Proc. Natl. Acad. Sci. A. 2007; 104: 4176-4181Crossref (324) 6Cane Maco B. Knott G. Holtmaat relationship between clustering spine stability vivo.J. Neurosci. 2014; 34: 2075-2086Crossref (125) example, varicosities mouse ENS, has shown nitrergic neurotransmission (7Chaudhury He X.D. Goyal R.K. Role membrane association catalytic activity nNOSalpha mice gut.Am. Physiol. Gastrointest. Liver 2009; 297: G806-G813Crossref (18) In CNS, overexpressing cortical reduced turnover rates pre- postsynaptic structures, thus promoting contacts (8Taft C.E. Turrigiano G.G. promotes young contacts.Philos. Trans. Soc. Lond. B https://doi.org/10.1098/rstb.2013.0134Crossref (41) addition, direct interaction ephrinB3 controls localization within synapses density (9Hruska Dalva M.B. Ephrin formation, plasticity.Mol. 50: 35-44Crossref (105) Synaptophysin involved fusion release (10Edelmann L. Hanson P.I. Chapman E.R. Jahn Synaptobrevin binding synaptophysin: potential mechanism exocytotic machine.EMBO 14: 224-231Crossref (385) 11Valtorta F. Pennuto Bonanomi Benfenati Synaptophysin: Leading actor walk-on exocytosis?.Bioessays. 2004; 26: 445-453Crossref (260) Moreover, increasing synaptophysin formation (12Bottner Harde Barrenschee Hellwig Vogel Ebsen Wedel GDNF induces neurons.Neurosci. Res. 2013; 77: 128-136Crossref (20) Synapsins both assembly/maintenance reserve pool vesicles hippocampal (13Greengard P. Valtorta Czernik A.J. Synaptic phosphoproteins function.Science. 1993; 259: 780-785Crossref (1104) Scholar) (14Cesca Baldelli synapsins: Key actors plasticity.Prog. Neurobiol. 2010; 91: 313-348Crossref (403) 15Perlini L.E. Botti Fornasiero E.F. Giannandrea Amendola Naldini Effects phosphorylation on I.J. 2011; 124: 3643-3653Crossref (26) underlying regulating less studied. context, factor represents candidate choice since it described regulator (16Talebian Henkemeyer cell-autonomous forward mediates auditory memory recall learning-driven spinogenesis.Commun. 2019; 2: 372Crossref (7) 17Grunwald I.C. Korte Wolfer Wilkinson G.A. Unsicker K. Lipp Bonhoeffer Kinase-independent requirement receptors plasticity.Neuron. 2001; 32: 1027-1040Abstract Full Text PDF (253) 18Henderson J.T. Georgiou Jia Z. Robertson Elowe Roder J.C. Pawson kinase regulates NMDA-dependent function.Neuron. 1041-1056Abstract (259) member eph family, members ubiquitously epithelial variety processes, connectivity/plasticity (19Kania Mechanisms ephrin-Eph signalling development, physiology disease.Nat. Mol. 2016; 17: 240-256Crossref (297) Fourteen Eph encoded genome divided (EphA1–EphA8 EphA10) (EphB1–EphB4 EphB6) classes activated eight different ephrin ligands 20Cisse Checler receptors: New players Alzheimer's disease pathogenesis.Neurobiol. Dis. 2015; 73: 137-149Crossref (25) 21Klein Bidirectional modulation Eph/ephrin signaling.Nat. 12: 15-20Crossref (317) ephrins engage multitude activities mediate contact-dependent communication same types cell morphology, adhesion, movement, survival, differentiation (22Pasquale E.B. casts wide net behaviour.Nat. 2005; 6: 462-475Crossref (830) 23Alapin J.M. Dines Vassiliev Tamir Ram Locke C. Yu Lamprecht Activation enhances consolidation.Cell Rep. 2018; 23: 2014-2025Abstract 24Murata Y. Constantine-Paton Postsynaptic scaffold SAP102 through EphB PAK pathway.J. 33: 5040-5052Crossref (47) Upon activation, could phosphorylated intracellular section, thereby activate cascade events (25Penzes Beeser Chernoff Schiller M.R. Eipper B.A. Mains Huganir R.L. Rapid induction dendritic morphogenesis trans-synaptic ephrinB-EphB Rho-GEF kalirin.Neuron. 2003; 37: 263-274Abstract 26Hoogenraad C.C. Milstein A.D. Ethell I.M. Sheng GRIP1 dendrite trafficking.Nat. 8: 906-915Crossref (172) 27Tolias K.F. Bikoff Kane C.G. Tolias C.S. Hu Greenberg M.E. Rac1 guanine nucleotide exchange Tiam1 receptor-dependent development.Proc. 7265-7270Crossref (159) 28Margolis S.S. Salogiannis Lipton D.M. Mandel-Brehm Wills Z.P. Mardinly A.R. Greer P.L. Ho H.Y. Soskis M.J. Sahin EphB-mediated degradation RhoA GEF Ephexin5 relieves brake excitatory formation.Cell. 143: 442-455Abstract (168) ephrinB2-dependant phosphorylation, leading an Kalirin-7 (29Sommer J.E. Budreck E.C. Kalirin-7: Linking behavior.J. 29: 5367-5369Crossref (10) kinase-dependent manner (27Tolias Rac1-dependent actin cytoskeletal Recently, Memic et al. (30Memic Knoflach V. Morarach Sadler Laranjeira Hjerling-Leffler Sundstrom E. Pachnis Marklund Transcription regulators developing Subtypes system.Gastroenterology. 154: 624-636Abstract (39) identified patterns ephrin/Eph ENS. Furthermore, recent study showed was colonic nerves sprouting via ERK-MAPK PI3K–protein pathways patients irritable bowel syndrome (31Zhang Wang Bai Xiang X. Qian Song Hou EphrinB2/ephB2-mediated plasticity: persistent muscle hypercontractility pain postinfectious IBS.FASEB 13644-13659Crossref (9) involvement additional impact Therefore, here investigate spatial rat cultures respectively. examine biochemical electrophysiological approaches. First, assessed regional small (jejunum ileum) large (colon) intestine. Western blot analysis relatively present all those segments EphB2-derived fragments detectable marker PGP9.5 more (Fig. 1, D). Although amount loaded analysis, ponceau S 1B) Coomassie blue 1C) stainings difference protein profil/content intestinal segments. Interestingly, found no levels transcripts 1E), suggesting posttranscriptional regulation. Next, focused cellular distal colon. Combining confocal imaging dual labeling PGP9.5, stains soma, interganglionic nerve strands (not shown) βIII-tubulin (Tuj1) 1F), strong particularly processes. Further, observed addition colocalization Tuj1, subset resembles/colocalizes body HuC/D 1G). contrast, (EGCs) costainings GFAP 1H) S100β shown). Kalirin-7, well mediator brain 29Sommer Scholar), absent colabeling antibody against S1A). Tuj1 S1B). confirmed S1C). strongly EGCs significant S1D) S1E). Taken together, results demonstrate soma while mainly some extent characterized (20Cisse much Thus, aimed dissect To pursue objective, first examined whether (32Chevalier Derkinderen Gomes Thinard Naveilhan Vanden Berghe Neunlist Activity-dependent hydroxylase system.J. 2008; 586: 1963-1975Crossref (65) 33Le Berre-Scoul Chevalier Oleynikova Cossais Talon Boudin H. novel neuron-glia coculture reveals development.J. 595: 583-598Crossref (27) suitable model signaling. staining similar tissues. Indeed, mostly EGCs, 2A) 2B) antibodies, next used mediators associated well. western ERK1/2 (34Elowe Holland S.J. Kulkarni Downregulation Ras-mitogen-activated pathway ephrin-induced neurite retraction.Mol. 21: 7429-7441Crossref (156) PAK1 (35Srivastava Robichaux M.A. Chenaux Cowan C.W. growth cone collapse Nck Pak.Mol. 52: 106-116Crossref (22) (36Keith El-Husseini Excitation control: Balancing at synapse.Front. 1: 4Crossref (116) p38 (37Correa S.A. Eales K.L. MAPK substrates neurodegenerative disease.J. Signal Transduct. https://doi.org/10.1155/2012/649079Crossref (38Kwon S.E. kinetics endocytosis neurons.Neuron. 70: 847-854Abstract (271) (39Rocchi Sacchetti De Fusco Giovedi Parisi Cesca Holtje Ruprecht Ahnert-Hilger Autoantibodies sequestrate alter function.Cell Death 10: 864Crossref were 3A). sought determine active culture model. recombinant form ephrinB2, fused fragment crystalizable (Fc) moiety can clustered anti-Fc bioactive multimer ephrinB2-Fc. Preclustered ephrinB2-Fc trigger responses depending experimental paradigm (40Moeller M.L. Shi Reichardt L.F. recruitment/phosphorylation focal adhesion activation.J. Chem. 2006; 281: 1587-1598Abstract (83) time-dependent capacity Neurons treated control-Fc 5 min 3 h concentration 2 μg/ml. activated/phosphorylated downregulated 30 45 interval 3, B–D). total unchanged, treatment B, E, F). G). These suggest effect downstream conducted dose response. indicated concentrations. H I). changes ERK1/2, dependent H–L). suggests activates subsequent time- dose-dependent mediators. end, chronically exposed consecutive days. Similar acute sustained concomitant pERK1/2 4, C). assess connectivity, evaluated various abundantly presynaptic vesicles, scaffolding density. ephrinB2-induced depletion accompanied D), E), lesser G) 4A) unaffected. Correlation densitometry revealed 4H), 4I), 4J), linearly correlated levels. further explore affects performed immunohistochemical visualize antibodies label synapse-specific components and/or compartments (41Verstraelen Van Dyck Verschuuren Kashikar N.D. Nuydens Timmermans J.P. Vos W.H. Image-based profiling culture.Front. 389Crossref (12) exposure 5, change anti-HuC/D fragment, F) C ephrinB2-dependent process morphology Tuj-1 staining. morphological number ephrinB2-treated condition H–J). following likely due ephrinB2-specific regulatory rather than broader reducing number, SAPs. chronic induced (5 days) translate properties whole-cell patch-clamp recordings using KCl-based solution. passive control-treated (Table 1 Fig. 6, B). Cs-based solution measure currents (mPSCs). exhibited 3-fold reduction mPSC frequency fragment) displayed normal amplitude 6E), rise time 6F), decay 6G). connectivity/activity.Table 1Summary recorded current-clamp configuration solutionAction potentialNo. cellsVrest, mVRin, MohmRheobase, pAAmplitude, mVRise time, msDecay msHalf-width, msControl16/8−38.2 ± 21615 23828.8 3.952.2 2.94 0.36.2 1.14.9 0.6ephrinB216/8−37.6 1.41602 21725.4 4.457 3.53.4 0.35.4 0.84.3 0.6 Open table new tab provides evidence identifies mechanisms. across rat. EphrinB2-dependent cultures. Overtime, leads downregulation proteins. long-term significantly mPSPs action potentials resting properties. broad important intestines. mRNA consistent protein, probably regulations affect mRNAs before translated (42Vogel Marcotte E.M. Insights abundance proteomic transcriptomic analyses.Nat. Genet. 13: 227-232Crossref (2254) 43Liu Beyer Aebersold On dependency abundance.Cell. 165: 535-550Abstract (1137) plexus. detected immunostainings, cannot rule out possibility (44Holmberg Genander Halford M.M. Anneren Sondell Chumley Silvany Frisen coordinate migration proliferation stem niche.Cell. 125: 1151-1163Abstract (235) 45Genander Xu N.J. Eriksson Qiu Martling Greicius Thakar Catchpole Zdunek Holm Goff S.P. al.Dissociation mediating progenitor tumor suppression.Cell. 139: 679-692Abstract (131) comparison similarities.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (58)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....