Niobium-doped conductive TiO-TiO2 heterostructure supported bifunctional catalyst for efficient and stable zinc-air batteries
DOI:
10.1016/j.jcis.2023.07.145
Publication Date:
2023-07-24T22:02:33Z
AUTHORS (8)
ABSTRACT
The development of highly active and durable nonprecious metal-based bifunctional electrocatalysts for oxygen reduction/evolution reaction (ORR/OER) is important for rechargeable zinc-air batteries. Herein, a three-dimensional conductive niobium-doped TiO-TiO2 heterostructure supported ZIF-67-derived Co-NC bifunctional catalyst was fabricated. In the Co-NC@Nb-TiOx catalyst, the Nb doping promoted the formation of TiO-TiO2 heterojunction support, enhanced its conductivity and stability and provided strong electron metal-support interaction between Co-NC and Nb-TiOx. Also, the supported Co-NC nanoparticles provided abundant active sites with excellent ORR/OER activity. Experimental analysis reveals that the high OER activity of Co-NC@Nb-TiOx can be attributed to the in-situ generated CoOOH species. It exhibits excellent ORR activity, as shown by its onset potential (0.95 V vs. RHE) and half-wave potential (0.86 V vs. RHE). Its OER overpotential at 10 mA cm-2 is 480 mV. The zinc-air battery realizes outstanding cycling stability over 225 h cycles tested at 10 mA cm-2. This work demonstrates the importance of designing highly stable metal oxide-supported catalysts in electrochemical energy conversion devices.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (12)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....