Constructing stable V2O5/V6O13 heterostructure interface with fast Zn2+ diffusion kinetics for ultralong lifespan zinc‐ion batteries

DOI: 10.1016/j.jcis.2023.11.127 Publication Date: 2023-11-23T22:09:07Z
ABSTRACT
Given their plentiful reserves, impressive safety features, and economical pricing, aqueous zinc - ion batteries (ZIBs) have positioned themselves as strong competitors to lithium - ion batteries. Yet, the scarcity of available cathode materials poses a challenge to their continued development. In this study, a V2O5/V6O13 heterostructure has been synthesized using a one - pot hydrothermal approach and employed as the cathode material for ZIBs. As evidenced by both experimental and theoretical findings, V2O5/V6O13 heterostructure delivers a rapid electrons and ions diffusion kinetics promoted by the stable interface and strong electronic coupling with significant charge transfer between V2O5 and V6O13, as well as a stable interface achieved by adjusting V - O bond length. Consequently, the optimized V2O5/V6O13 heterostructure cathode of ZIBs demonstrates exceptional capacity (338 mAh g-1 at 0.1 A g-1), remarkable cycling stability (92.96 % retained after 1400 cycles at 1 A g-1). Through comprehensive theoretical calculations and ex situ characterization, the kinetic analysis and storage mechanism of Zn2+ are thoroughly investigated, providing a solid theoretical foundation for the advancement of novel V - based cathode materials aimed at enhancing the performance of ZIBs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (64)
CITATIONS (25)