Yolk shell structured YS-Si@N-doped carbon derived from covalent organic frameworks for enhanced lithium storage

Carbon fibers
DOI: 10.1016/j.jcis.2024.02.071 Publication Date: 2024-02-10T02:45:41Z
ABSTRACT
Silicon (Si) has ultra-high theoretical capacity (4200 mAh g-1) and accordingly is widely studied as anode materials for lithium-ion batteries (LIBs). However, its huge volume expansion during charging/discharging is a fatal challenge. The preparation of Si-based composite materials with yolk shell structure is the key to solving the Si volume expansion. Here, N-doped carbon-coated Si nanoparticles (SiNPs) nanocomposites (YS-Si@NC-60) with yolk shell structure derived from covalent organic frameworks (COFs) was prepared. N-doped carbon shells derived from COFs not only maintain the well-ordered nanosized pores of COFs, which facilitates the transport of Li+ to contact with internal SiNPs, but also provide more extra active sites for Li+ storage. Most importantly, the internal void can effectively alleviate the damage effect of SiNPs volume expansion. The obtained YS-Si@NC-60 as a LIBs anode show high cyclic stability and Li+ storage performances. At 0.1 A g-1, the capacity is 1446 mAh g-1 after 110 cycles, and initial coulomb efficiency is as high as 82.2 %. The excellent performance can be attributed to the unique yolk shell structure. This simple and template-free strategy provides a new idea for preparing Si-C nanocomposites with yolk shell structure.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (63)
CITATIONS (27)