Fluorination modification enhanced the water resistance of Universitetet i Oslo-67 for multiple volatile organic compounds adsorption under high humidity conditions: Mechanism study
Trifluoroacetic acid
DOI:
10.1016/j.jcis.2024.03.192
Publication Date:
2024-03-29T16:09:43Z
AUTHORS (10)
ABSTRACT
The construction of metal-organic frameworks (MOFs) with highly efficient capture for volatile organic compounds (VOCs) adsorption under humid conditions is a significant yet formidable task. Herein, series of fluorinated UiO-67 modified with trifluoroacetic acid (TFA) and 4-fluorobenzoic acid were successfully synthesized for VOCs adsorption under high humidity conditions. Experiments results showed that UiO-67 modified with 4-fluorobenzoic acid (67-F) presented excellent adsorption capacity of 345 mg/g for toluene adsorption and exhibited great water resistance (10.0 vol% H2O, 374 mg/g toluene adsorption capacity). Characterization results indicated that the introduction of 4-fluorobenzoic acid induced the competitive coordination between 4-fluorobenzoic acid and 4,4-biphenyl dicarboxylic acid (BPDC) with Zr4+, causing the formation of abundant defects to provide extra adsorption sites. Meanwhile, the benzene ring in 4-fluorobenzoic acid enhanced the π-π conjugation, causing the further promotion of VOCs adsorption capacity. More importantly, the water resistance mechanism was investigated and elucidated that the introduction of F decreased the surface energy of 67-F and its affinity with water. Meanwhile, the metal complex induced by the fluorinated modification produced an electron-dense pore environment, which greatly improved its chemical and water stability. This work provided a strategy for preparing an adsorbent with high water resistance for real-world VOCs adsorption at high humidity conditions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (76)
CITATIONS (49)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....