Development and first clinical application of automated virtual reconstruction of unilateral midface defects
Adult
Male
Adolescent
610 Medicine & health
Patient Care Planning
User-Computer Interface
Young Adult
03 medical and health sciences
Imaging, Three-Dimensional
0302 clinical medicine
Image Processing, Computer-Assisted
Humans
Computer Simulation
Child
Orbital Fractures
Aged
Zygomatic Fractures
3504 Oral Surgery
Middle Aged
Plastic Surgery Procedures
2746 Surgery
2733 Otorhinolaryngology
Surgery, Computer-Assisted
Female
10069 Clinic of Cranio-Maxillofacial Surgery
DOI:
10.1016/j.jcms.2015.06.033
Publication Date:
2015-07-05T11:47:39Z
AUTHORS (6)
ABSTRACT
Computer-assisted surgery is used for decision making, treatment, and quality control throughout the reconstruction process of unilateral midface defects. The current approaches exploit the symmetry of the face by mirroring the intact side on the defect side using various segmentation methods. All commercially available implementations, however, are somewhat time consuming and dependent on the level of expertise of the user. We present a method for automatic reconstruction of unilateral midface defects using registration.To reconstruct a skull by registration, the defect volume has to be virtually deleted from the skull. This modified data set is then mirrored and registered onto the original, defect-free skull. The fusion of these two skulls is the virtual reconstructed skull bridging the defect. Reconstruction by registration was performed for 24 different skulls without motion or dental restoration artifacts. Subsequently, simulation was performed with four accurately defined, various-sized, defects of the orbito-zygomatic complex. The results of the automated virtual reconstructions were compared with those obtained for the same defects as determined using conventional atlas-based planning software (iPlan). To simulate various clinical situations, four groups each containing six skulls were evaluated: the complete skull, midface and neurocranium, midface and lower jaw, and midface alone. The differences were compared using the similarity coefficients of Sørensen-Dice and Jaccard. Statistical analyses were performed using the t-test and Mann-Whitney U test.The reconstruction results were similar for all the groups. The Sørensen-Dice coefficients of similarity for all reconstructed skulls were 0.869 and 0.874 for the registration and atlas-based reconstructions, respectively. The corresponding Jaccard coefficients were 0.774 and 0.781, respectively. Atlas-based reconstruction showed significantly better results in group 3 (midface and lower jaw) alone.Virtual automated reconstruction by registration had equivalent accuracy to conventional atlas-based reconstruction across a spectrum of defects, from simple orbital to complex orbito-zygomatic defects. However, for those involving the midface and lower jaw, atlas-based reconstruction showed significantly better results. Although the new approach is somewhat hardware demanding, it is user independent, dispensing with the need for time-consuming adjustments to the results of planning. The first clinical application of registration reconstruction revealed performance equivalent to that of the conventional approach.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (34)
CITATIONS (26)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....