A novel and rapid method of integrating sensors for SHM to thermoplastic composites through induction heating
Induction heating
Thermoplastic composites
Thermoplastic adhesive films
TA401-492
Mechanical testing
Piezoceramic transducers
SHM
Materials of engineering and construction. Mechanics of materials
DOI:
10.1016/j.jcomc.2025.100568
Publication Date:
2025-02-06T08:08:50Z
AUTHORS (4)
ABSTRACT
A novel, rapid, and efficient method for bonding Piezoceramic transducers (PCTs) to high-performance thermoplastic composites using thermoplastic adhesive films (TPAFs) and induction heating is presented. The current state-of-the-art techniques to bond PCTs to composites using epoxy adhesives can take hours. This innovative out-of-oven or autoclave procedure drastically reduces bonding time to mere minutes, thereby significantly enhancing the process efficiency. Five different TPAFs were used to bond PCTs to carbon fiber polyether-ether-ketone (CF-PEEK) coupons. After determining the process window and analyzing the effects of power, coupling distance, and time on temperature, it was found that power has the greatest influence. A 20% increase in power can result in 50.9% increase in temperature as compared to time. Controlled heating and cooling ramps were developed based on the power-temperature correlation, and their effects were analyzed through differential scanning calorimetry tests. In the controlled case, the melting enthalpy of semi-crystalline TPAF increased by 4.2%, while the glass transition temperature of amorphous TPAF increased by 2.4% compared to non-controlled case. Following successful PCT bonding, mechanical performance was evaluated through static flexural and fatigue tests. TPAFs exhibited critical strains of 0.33%-0.71%, with some exceeding the critical strains of co-bonded or epoxy-bonded PCTs in previous studies by 0.13%. Microscopic analyses revealed the dominant failure mode at the composite-adhesive interface. During fatigue testing, three out of five TPAFs performed successfully, with the highest change in electro-mechanical susceptance spectra observed in amorphous TPAF equivalent to 1.87%. Overall, an efficient methodology is proposed, particularly beneficial for applications in structural health monitoring.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (28)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....