Differential loading methods for BMP-2 within injectable calcium phosphate cement
Calcium Phosphates
Male
0301 basic medicine
Surface Properties
Drug Compounding
Injections, Subcutaneous
NCMLS 3: Tissue engineering and pathology
Bone Morphogenetic Protein 2
Protein Structure, Secondary
03 medical and health sciences
Polylactic Acid-Polyglycolic Acid Copolymer
Medical Imaging - Radboud University Medical Center
Animals
Lactic Acid
Rats, Wistar
Drug Implants
Tomography, Emission-Computed, Single-Photon
ONCOL 3: Translational research NCMLS 2: Immune Regulation
Bone Cements
Rats
ONCOL 3: Translational research
Solubility
Microscopy, Electron, Scanning
Porosity
Polyglycolic Acid
DOI:
10.1016/j.jconrel.2012.07.007
Publication Date:
2012-07-16T04:30:37Z
AUTHORS (5)
ABSTRACT
Clinical application of calcium phosphate cement (CPC; with incorporated polymeric porogens) in an injectable form implicates that loading methods for growth factors are limited. In view of this, the current study evaluated the in vitro and in vivo release kinetics of bone morphogenetic protein-2 (BMP-2) loaded on poly(d,l-lactic-co-glycolic acid) (PLGA) microparticles (CPC/PLGA), BMP-2 incorporation into the liquid phase of CPC (CPC/liquid), and BMP-2 absorbed to the surface of preset, porous CPC (CPC/surface) as a control via an in vitro release experiment and in vivo using microSPECT imaging with (125)I-labeled BMP-2. In addition, the osteoinductive capacity of scaffolds generated via the different BMP-2 loading methods was assessed in a subcutaneous rat model. Additional controls consisted of porous CPC scaffolds (CPC/porous) and CPC/PLGA (CPC/control) without BMP-2 loading. The results revealed that it is feasible to load BMP-2 into CPC via adsorption to PLGA-microparticles or the liquid phase of CPC, which resulted in a similar release profile over the course of 28 days, despite distinct protein distribution patterns. Compared to CPC-scaffolds with surface-loaded BMP-2, these loading methods showed a similar release profile, except for a significantly decreased burst release. As such, the observed osteoinductive capacity for only CPC-scaffolds with surface-loaded BMP-2 is likely to be related to this difference in burst release. It remains unclear to what extent the differential BMP-2 loading methods for injectable CPC can affect the biological response in a bone environment.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (34)
CITATIONS (48)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....