Bioleaching of valuable metals from spent LIBs followed by selective recovery of manganese using the precipitation method: Metabolite maximization and process optimization
Oxalic Acid
DOI:
10.1016/j.jenvman.2023.118197
Publication Date:
2023-05-20T09:47:48Z
AUTHORS (4)
ABSTRACT
Despite the increased demand for resource recovery from spent lithium-ion batteries (LIBs), low Mn leaching efficiencies have hindered the development of this technology. A novel process was devised to enhance the dissolution of metals by producing citric acid using a molasses medium by Penicillium citrinum. This investigation used response surface methodology to investigate the influence of molasses concentration and media components on citric acid production, which demonstrated that molasses (18.5% w/w), KH2PO4 (3.8 g/L), MgSO4.7H2O (0.11 g/L), and methanol (1.2% (v/v)) were the optimum values leading to the production of 31.50 g/L citric acid. Afterward, optimum inhibitor concentrations (iodoacetic acid: 0.05 mM) were added to accumulate citric acid, resulting in maximum bio-production (40.12 g/L) of citric acid. The pulp density and leaching time effect on metals dissolution was investigated in enriched-citric acid spent medium. The suitable conditions were a pulp density of 70 g/L and a leaching duration of 6 days, which led to the highest dissolution of Mn (79%) and Li (90%). Based on the results of the TCLP tests, the bioleaching residue is non-hazardous, suitable for safe disposal, and does not pose an environmental threat. Moreover, nearly 98% of Mn was extracted from the bioleaching solution with oxalic acid at 1.2 M. XRD, and FE-SEM analyses were utilized for further bioleaching and precipitation mechanism analysis.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....