Advancing solar wastewater treatment: A photocatalytic process via green ZnO/g-C3N4 coatings and concentrated sunlight – Comprehensive insights into ciprofloxacin antibiotic inactivation
DOI:
10.1016/j.jenvman.2024.123178
Publication Date:
2024-11-12T05:47:31Z
AUTHORS (8)
ABSTRACT
In this study, a sustainable method employing concentrated sunlight to achieve environmental remediation of wastewater, contaminated by Ciprofloxacin antibiotic (CIP), is thoroughly investigated. A green ZnO/g-C3N4 nanocomposite (NC) is used as a photocatalyst coating on glass to investigate the inactivation of CIP in water, in a flow-reactor configuration at small-prototype scale (10 liters/h, catalyst area 187.5 cm2 ). ZnO/g-C3N4 NC coatings were obtained by an in-situ thermal condensation process coupled with a green synthesis protocol and deposited on glass, via a simple drop casting method. Morphological and structural analyses of synthesized composites were performed with Fourier-Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray (EDX) and X-ray diffraction (XRD) techniques, while optical properties were studied with Diffuse Reflectance Spectroscopy (DRS). The degradation of CIP was first tested at a lab scale under simulated sunlight and then studied under sunlight in a parabolic trough concentrator (PTC). Suitable degradation of CIP (100%) was observed at 210 min via High-Performance Liquid Chromatography (HPLC) and the by-products were determined by Liquid Chromatography-Mass Spectroscopy (LC–MS). Microbiological tests revealed the absence of antibacterial activity in CIP water treated with ZnO/g-C3N4 NC photocatalyst against Staphylococcus aureus, Pseudomonas aeruginosa, and Priestia megaterium. Our results directly demonstrate the effective inactivation of CIP with a process designed for sustainability both in terms of energy input (solar) and scalability of materials. Also, the small-prototype scale of this investigation provides insights into the challenges arising from the perspective scale-up to an industrial application, aimed at antibiotics inactivation in wastewater and thus helping to prevent the spread of antimicrobial resistance (AMR).
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (55)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....