Shewanella oneidensis MR-1 and oxalic acid mediated vanadium reduction and redistribution in vanadium-containing tailings
Shewanella oneidensis
Oxalic Acid
Redistribution
DOI:
10.1016/j.jhazmat.2023.131077
Publication Date:
2023-02-24T17:27:14Z
AUTHORS (5)
ABSTRACT
The microbially- and chemically-mediated redox process is critical in controlling the fate of vanadium (V) in tailing environment. Although the microbial reduction of V has been widely studied, the coupled biotic reduction mediated by beneficiation reagents and the underlying mechanism remain unclear. Herein, the reduction and redistribution of V in V-containing tailings and Fe/Mn oxide aggregates mediated by Shewanella oneidensis MR-1 and oxalic acid were explored. The dissolution of Fe-(hydr)oxides by oxalic acid promoted the microbe-mediated V release from solid-phase. After 48-day of reaction, the dissolved V concentrations in the bio-oxalic acid treatment reached maximum values of 1.72 ± 0.36 mg L-1 and 0.42 ± 0.15 mg L-1 in the tailing system and the aggregate system, respectively, significantly higher than those in control (0.63 ± 0.14 mg L-1 and 0.08 ± 0.02 mg L-1). As the electron donor, oxalic acid enhanced the electron transfer process of S. oneidensis MR-1 for V(V) reduction. The mineralogical characterization of final products indicates that S. oneidensis MR-1 and oxalic acid promoted solid-state conversion from V2O5 to NaV6O15. Collectively, this study demonstrates that microbe-mediated V release and redistribution in solid-phase were promoted by oxalic acid, suggesting that the role of organic agents for the V biogeochemical cycle in natural systems deserves greater attention.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (69)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....