Enhancement of ablation and ultrafast electron dynamics observation of nickel-based superalloy under double-pulse ultrashort laser irradiation
Laser Ablation
Pulsed Laser Deposition
DOI:
10.1016/j.jmrt.2022.11.005
Publication Date:
2022-11-08T02:24:09Z
AUTHORS (6)
ABSTRACT
Temporally shaped femtosecond laser machining is a flexible and effective method to improve the efficiency and quality of cooling film holes. This study investigated the ablation of nickel-based superalloy by double-pulse femtosecond laser with different pulse-separations and fluences. Compared with single-pulse ablation, approximate 1.5 times enhancement of ablation area was obtained in double-pulse ablation with about 2 ps pulse-separation. By varying the pulse-separations, the ablation area can be tuned, and at the same time, the ablation depth can be kept for little fluctuation. An improved two-temperature model and time-resolved transient reflectivity technique were used for analyzing the ablation mechanisms. We found that more energy deposition can happen from electron system to lattice system for double-pulse ablation, which makes ablation area increase. However, mechanical relaxation started at around 2 ps, which could be suppressed by the pressure wave induced by the second sub-pulse, and finally achieved the maximum ablation area at about 2 ps pulse-separation. Besides, laser-induced subwavelength periodic surface structures were observed under irradiation of multiple pulses. The findings may aid in understanding the ablation mechanism between nickel-based superalloy and femtosecond laser, as well as in optimizing the processing of cooling film holes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (9)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....