Scenario-based performance assessment of green-grey-blue infrastructure for flood-resilient spatial solution: A case study of Pazhou, Guangzhou, greater Bay area
Green infrastructure
Resilience
Spatial Planning
DOI:
10.1016/j.landurbplan.2023.104804
Publication Date:
2023-06-15T16:18:54Z
AUTHORS (3)
ABSTRACT
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care. Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.<br/>Flood resilience has aroused significant interest in coastal areas dealing with a growing frequency of severe rainstorms caused by climate change and urbanisation. At the core of flood resilience is the development of a resilient green-grey-blue infrastructure system that can resist, absorb, and recover from floods in a timely manner. Current flood resilience research, however, is limited to evaluating single infrastructure systems, failing to examine the dynamic process or find ideal spatial infrastructure designs for decision-makers. This research proposes a scenario-based assessment framework for integrated green-grey-blue infrastructure systems to improve flood resilience during urban design decision-making. Rainfall-runoff, drainage networks, and river system models are interlinked to provide quantitative simulation evaluations of water quantity and urban impact in various spatial organisations of infrastructure design. A dynamic, multi-criteria decision-making process is used to reveal the importance of five temporal indicators and rank design alternatives. In Guangzhou, China, the efficiency of this architecture is demonstrated on Pazhou Island, a typical river network area. Given the limited water and green space available, the results demonstrate that submerged areas exert a greater influence during peak rainfall, and blue infrastructure storage becomes an essential factor following rainfall. Furthermore, from a spatial perspective, the looped network of green-blue infrastructure enhances flood resilience, and downstream waterway connections and green space-aligned waterways boost the water storage capacity of green-grey-blue infrastructure. This paradigm can improve flood resilience in the Greater Bay Area in the future, especially in response to heavy rainstorms and river floods.<br/>Landscape Architecture<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (24)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....