Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats

Inflammation 0301 basic medicine Body Weight NF-kappa B Apoptosis Glycyrrhizic Acid Rats 3. Good health Toll-Like Receptor 4 Oxidative Stress 03 medical and health sciences Huntington Disease Animals HMGB1 Protein
DOI: 10.1016/j.lfs.2022.121317 Publication Date: 2022-12-23T03:08:09Z
ABSTRACT
Glycyrrhizin (Glyc) is a saponin triterpenoid that has signified its efficacy against Huntington's disease (HD). Nonetheless, its mechanism has not been fully clarified. Accordingly, this study was designed to evaluate the plausible mechanism of action of Glyc against 3-nitropropionic acid (3-NP)-induced HD.Rats were treated with Glyc (50 mg/kg, i.p.) for 3 weeks and 3-NP (10 mg/kg, i.p.) was administered at the latter 2 weeks alongside to induce HD.Animals exposed to 3-NP revealed a reduction in body weight, neurobehavioral abnormalities, and various deleterious effects related to overexpression of HMGB1 such as oxidative stress, apoptosis, and inflammation. Promisingly, Glyc administration provided valuable effects by reversing the decline in body weight with improved neurobehavioral deficits. Ameliorating oxidative stress via restoring GSH, SOD, and Nrf2 alongside with MDA suppression was evident. Furthermore, Glyc switched the HMGB1/TLR4/NF-κB p65 signaling off, reduced IL-6, IL-β, TNF-α, caspase-3, and increased Bcl-2 as well as BDNF. All these beneficial effects were mirrored by a better histopathological picture upon using Glyc that suppressed gliosis by reducing GFAP expression as observed in the immunohistochemistry results.Accordingly, the current study demonstrated a promising neuroprotective effect of Glyc against experimentally induced HD through alleviating deleterious events by diverse mechanisms.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (69)
CITATIONS (22)