Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds

Organothiophosphates Fungi Methyl Parathion Methylation 01 natural sciences 3. Good health Aspergillus Biodegradation, Environmental Phenols Humans Chlorpyrifos Pesticides 0105 earth and related environmental sciences
DOI: 10.1016/j.marpolbul.2021.112185 Publication Date: 2021-02-26T03:16:51Z
ABSTRACT
The indiscriminate use of organophosphate pesticides causes serious environmental and human health problems. This study aims the biodegradation of chlorpyrifos, methyl parathion and profenofos with the proposal of new biodegradation pathways employing marine-derived fungi as biocatalysts. Firstly, a growth screening was carried out with seven fungi strains and Aspergillus sydowii CBMAI 935 was selected. For chlorpyrifos, 32% biodegradation was observed and the metabolites tetraethyl dithiodiphosphate, 3,5,6-trichloropyridin-2-ol, 2,3,5-trichloro-6-methoxypyridine, and 3,5,6-trichloro-1-methylpyridin-2(1H)-one were identified. Whereas 80% methyl parathion was biodegraded with the identification of isoparathion, methyl paraoxon, trimethyl phosphate, O,O,O-trimethyl phosphorothioate, O,O,S-trimethyl phosphorothioate, 1-methoxy-4-nitrobenzene, and 4-nitrophenol. For profenofos, 52% biodegradation was determined and the identified metabolites were 4-bromo-2-chlorophenol, 4-bromo-2-chloro-1-methoxybenzene and O,O-diethyl S-propylphosphorothioate. Moreover, A. sydowii CBMAI 935 methylated different phenolic substrates (phenol, 2-chlorophenol, 6-chloropyridin-3-ol, and pentachlorophenol). Therefore, the knowledge about the fate of these compounds in the sea was expanded, and the marine-derived fungus A. sydowii CBMAI 935 showed potential for biotransformation reactions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (65)
CITATIONS (70)