Exploring the mechanical properties of additively manufactured carbon-rich zirconia 3D microarchitectures

UT-Gold-D 660 Lithografie Additive manufacturing Zirkoniumdioxid Micropillar compression Mikromechanik 600 Rapid Prototyping 3D printing micropillar compression 01 natural sciences 3D-Druck 0104 chemical sciences micromechanics Mechanische Eigenschaft TA401-492 Zirconia Micromechanics Materials of engineering and construction. Mechanics of materials additive manufacturing zirconia
DOI: 10.1016/j.matdes.2023.112142 Publication Date: 2023-07-11T15:32:32Z
ABSTRACT
Two-photon lithography (TPL) is a promising technique for manufacturing ceramic microstructures with nanoscale resolution. The process relies on tailor-made precursor resins rich in metal–organic and organic constituents, which can lead to carbon-based residues incorporated within the ceramic microstructures. While these are generally considered unwanted impurities, our study reveals that the presence of carbon-rich residues in the form of graphitic and disordered carbon in tetragonal (t-) ZrO2 can benefit the mechanical strength of TPL microstructures. In order to achieve a better understanding of these effects, we deconvolute the structural and materials contributions to the strength of the 3D microarchitectures by comparing them to plain micropillars. We vary the organic content by different thermal treatments, resulting in different crystal structures. The highest compression strength of 3.73 ± 0.21 GPa and ductility are reached for the t-ZrO2 micropillars, which also contain the highest carbon content. This paradoxical finding opens up new perspectives and will foster the development of “brick and mortar”-like ceramic microarchitectures.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (90)
CITATIONS (12)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....