Tree-inspired magnesium hybrid column for preventing hip collapse in steroid-associated osteonecrosis in bipedal emus
610
620
DOI:
10.1016/j.mattod.2024.08.009
Publication Date:
2024-09-13T12:37:59Z
AUTHORS (24)
ABSTRACT
Biodegradable magnesium (Mg)-based materials show promise in managing musculoskeletal diseases, attributed to their desired proper mechanical strength, and facilitating self-regenerative processes via spatiotemporal degradation during treatments for non-weight-bearing skeletal sites. However, to achieve a long-term steady state of the local biomechanical environment, it is essential to coupling implant degeneration and neo-tissue ingrowth without sacrificing local mechanical integrity. Steroid-associated osteonecrosis (SAON) presents a formidable clinical challenge, necessitating robust mechanical support to prevent collapse of weight-bearing hip joints while reversing pathological progression. Herein, a novel tree-inspired Mg hybrid column (Mg + BC) incorporating cannulated Mg screw and injectable Mg-containing bone cement (BC) is reported. Mg + BC tuned the gradual release of mineral ions (Mg, Ca, P), OH – and H 2 via electrochemical suppression and crystal re-deposition during degradation. Finite element analysis demonstrated that Mg + BC significantly reduced the proportion of relatively high load-bearing regions (CD: 26.0 %, Mg: 26.6 %, BC: 18.2 %, Mg + BC: 17.5 %) and effectively shifted the predominant loading from subchondral trabeculae to the femoral shaft cortex. The efficacy of the tree-inspired Mg hybrid column was validated in a clinically relevant bipedal emu model of SAON. Compared to standalone Mg screws, Mg + BC exhibited sustained degradation and enhanced bone-implant contact, indicating improved alignment between material degradation and tissue regeneration. After 6 months in vivo, the implant residue volume was significantly higher in the Mg + BC group (73.53 ± 10.90 %) compared to the Mg screw group (39.10 ± 11.31 %). The optimized degradation pattern of Mg + BC facilitated bone regeneration through modulation of macrophage recruitment and M1-to-M2 polarization shift. Notably, Mg + BC treatment significantly reduced hip joint collapse incidence (1/10) compared to CD group (7/10). The Mg + BC group maintained greater articular cartilage thickness in the intact region (1.74 ± 0.25 mm) compared to CD group (0.71 ± 0.15 mm). Gait analysis revealed substantial improvement in stride length for the Mg + BC group (87.14 ± 2.29 cm) compared to CD group (60.03 ± 1.31 cm), indicating maintenance of the hip anatomical structure and functional performance. Taken together, the tree-inspired Mg hybrid column is expected to be a unique hybrid system for bone tissue regeneration and prevention of joint collapse in weight-bearing regions affected by SAON, offering promising translational potential for clinical application.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....