The Circadian Clock Gene Circuit Controls Protein and Phosphoprotein Rhythms in Arabidopsis thaliana

Phosphoprotein Molecular clock
DOI: 10.1016/j.mcpro.2021.100172 Publication Date: 2021-11-03T05:16:07Z
ABSTRACT
•Circadian (phospho)proteomics time courses of plants with or without functional clock.•Most protein abundance/phosphorylation rhythms require a transcriptional oscillator.•The majority rhythmic phosphosites peak around subjective dawn ("phospho-dawn").•A phosphorylated serine the metabolic enzyme F2KP has relevance. Twenty-four-hour, circadian control many eukaryotic mRNA levels, whereas levels their more stable proteins are not expected to reflect RNA rhythms, emphasizing need test regulation abundance and modification. Here we present proteomic phosphoproteomic series from Arabidopsis thaliana under constant light conditions, estimating that just 0.4% quantified but much larger proportion phospho-sites were rhythmic. Approximately half most at dawn, pattern term "phospho-dawn." Members SnRK/CDPK family kinases candidate regulators. A CCA1-overexpressing line disables clock gene circuit lacked phosphorylation. However, few fluctuated despite CCA1-overexpression still tended in close suggesting canonical mechanism is necessary for perhaps all phosphorylation rhythms. To potential relevance our datasets, conducted phosphomimetic experiments using bifunctional fructose-6-phosphate-2-kinase/phosphatase (F2KP), as an example. The diverse targets controlled by circuit, implicating posttranslational mechanisms transmission timing information plants. Most observations well-characterized plant species can be explained genetic network mostly negatively interacting transcription factors (1Pokhilko A. Fernández A.P. Edwards K.D. Southern M.M. Halliday K.J. Millar A.J. includes repressilator additional feedback loops.Mol. Syst. Biol. 2012; 8: 574Crossref PubMed Scopus (299) Google Scholar, 2Fogelmark K. Troein C. Rethinking activation arabidopsis clock.PLoS Comput. 2014; 10e1003705Crossref (90) Scholar). In addition interactions, this transcriptional-translational loop (TTFL) system requires modification factor (3van Ooijen G. Non-transcriptional oscillators timekeeping.Trends Biochem. Sci. 37: 484-492Abstract Full Text PDF (51) Phosphorylation CCA1 casein kinase (CK) 2, example, function (4Daniel X. Sugano S. Tobin E.M. CK2 its oscillator Arabidopsis.Proc. Natl. Acad. U. 2004; 101: 3292-3297Crossref (148) Protein involved only also fungi, animals, cyanobacteria 5Nishiwaki T. Satomi Y. Nakajima M. Lee Kiyohara R. Kageyama H. Kitayama Temamoto Yamaguchi Hijikata Go Iwasaki Takao Kondo Role KaiC Synechococcus elongatus PCC 7942.Proc. 13927-13932Crossref (154) While TTFLs evolutionarily conserved Scholar), play role timekeeping similar across eukaryotes. For instance, important mammals (6Maier B. Wendt Vanselow J.T. Wallach Reischl Oehmke Schlosser Kramer large-scale RNAi screen reveals mammalian clock.Genes Dev. 2009; 23: 708-718Crossref (150) Scholar) fungi (7Yang Cheng P. He Q. Wang L. Liu frequency II Neurospora clock.Mol. Cell. 2003; 6221-6228Crossref (74) output (8Kusakina J. Dodd A.N. system.Trends Plant 17: 575-583Abstract (43) one study so far addressed question how pervasive higher (9Choudhary M.K. Nomura Nakagami Somers D.E. Quantitative analysis extensive key components physiological, signaling pathways.Mol. Proteomics. 2015; 14: 2243-2260Abstract (60) biology, studies have long dominated research efforts, leading well-established TTFL models (e.g., 10Leloup J.C. Goldbeter Toward detailed computational model clock.Proc. 100: 7051-7056Crossref (417) 11Baker C.L. Loros J.J. Dunlap crassa.FEMS Microbiol. Rev. 36: 95-110Crossref (153) 12Takahashi J.S. Transcriptional architecture clock.Nat. Genet. 2017; 18: 164-179Crossref (953) Scholar)). it become apparent cannot ignored, since these do simply follow transcript expression patterns (13Mauvoisin D. Jouffe Martin E. Atger F. Waridel Quadroni Gachon Naef Circadian clock-dependent -independent proteomes implement distinct diurnal functions mouse liver.Proc. 111: 167-172Crossref (217) 14Lück Thurley Thaben P.F. Westermark P.O. Rhythmic degradation explains unifies transcriptome proteome data.Cell Rep. 9: 741-751Abstract (99) 15Choudhary Shi profiling 2D-DIGE.Front. 2016; 7: 1007-1014Crossref (20) There even evidence oscillations driven nontranscriptional (NTOs) independent transcription. cyanobacterial based on autophosphorylation together KaiA KaiB proteins, does living cell create (16Nakajima Imai Ito Nishiwaki Murayama Oyama Reconstitution oscillation vitro.Science. 2005; 308: 414-415Crossref (767) Evidence NTOs exists eukaryotes; peroxiredoxin (PRX) rhythmically overoxidized absence algae human red blood cells (17O'Neill van Dixon L.E. Corellou Bouget F.Y. Reddy A.B. persist eukaryote.Nature. 2011; 469: 554-558Crossref (380) 18O'Neill clocks cells.Nature. 498-503Crossref (569) PRX overoxidation observed organisms impaired oscillators, mutants fungus crassa transgenic (19Edgar R.S. Green E.W. Zhao Olmedo Qin Xu Pan Valekunja U.K. Feeney K.A. Maywood E.S. Hastings M.H. Baliga N.S. Merrow et al.Peroxiredoxins markers rhythms.Nature. 485: 459-464Crossref (579) rhythm archaea addition, magnesium potassium ion transport been eukaryotes occur transcriptionally inactive Ostreococcus tauri (20Feeney Hansen L.L. Putker Olivares-Yañez Day Eades L.J. Larrondo L.F. Hoyle N.P. O'Neill Daily fluxes regulate cellular energy balance.Nature. 532: 375-379Crossref (141) 21Henslee E.A. Crosby Kitcatt S.J. Parry J.S.W. Bernardini Abdallat R.G. Braun Fatoyinbo H.O. Harrison E.J. Edgar Hoettges K.F. Jabr R.I. von Schantz al.Rhythmic regulates cells.Nat. Commun. 1978Crossref Therefore, least some possess appear ancient With mass spectrometer technology becoming advanced, several proteomics different species, such analyses (15Choudhary 22Reddy Karp N.A. Sage Deery Wong G.K. Chesham Odell Lilley K.S. Kyriacou C.P. orchestration hepatic proteome.Curr. 2006; 16: 1107-1115Abstract (422) 23Robles M.S. Cox Mann In-vivo quantitative contribution post-transcriptional liver metabolism.PLoS 10e1004047Crossref (254) 24Robles Humphrey central metabolism physiology.Cell Metab. 25: 118-127Abstract (191) 25Uhrig Echevarría-Zomeño Schlapfer Grossmann Roschitzki Koerber N. Fiorani Gruissem W. Diurnal dynamics rosette phosphoproteome.Plant Cell Environ. 2021; 44: 821-841Crossref (15) specifically day/night transition (25Uhrig 26Uhrig Schläpfer Hirsch-Hoffmann changes concerted acetylation organs seedlings.Plant 2019; 99: 176-194Crossref (33) phosphoproteomics study, used mass-spectrometry-based address following questions: (1) How normally functioning system, what characteristics rhythms? (2) Can disabled oscillator? investigate (1), course WT plants, addressing (2), generated overexpressing CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1-OX), which (27Wang Z.Y. Constitutive associated (CCA1) disrupts suppresses own expression.Cell. 1998; 93: 1207-1217Abstract (791) We global data parallel same extracts. Our revealed required phosphorylation, phosphopeptides dawn. found "phospho-dawn" trend among fluctuating CCA1-OX. Finally, selected phosphosite fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase (F2KP) illustrate pathways connect carbon metabolism. (Col-0 accession) over-expressing ("CCA1-OX," Scholar)) study. Seeds germinated grown plates (2.15 g/l Murashige & Skoog medium Basal Salt Mixture (Duchefa Biochemie), pH 5.8 (adjusted KOH), 12 agar (Sigma)) 85 μmol m−2 s−1 white fluorescent lights 21 °C Percival incubators 11 days h light, dark cycles. Seedlings transferred soil intensity 110 light–dark cycle. After had total 22 days, ZT 0 day 23 remained switched continuously collection material started (dataset I) 24 II). dataset I, six points 4 intervals taken five replicates each point, harvesting eight rosettes II, intervals, WT, (16 each) was therefore sampled ZT12 ZT32, ZT24 48 (CCA1-OX) ZT52 (WT). rationale starting either rather than later point enhance detection reducing desynchronization after longer periods (28Yakir Hassidim Melamed-Book Hilman Kron I. R.M. autonomous cell-type specific Arabidopsis.Plant 68: 520-531Crossref typically relatively small amplitudes technical variability compared (29Graf Coman Uhrig Walsh Flis Stitt Parallel scales regulation.Open 7Crossref Statistical assessment rhythmicity. both variance (ANOVA) JTK_CYCLE statistical tools (see below details). Rosettes roots harvested flash-freezing liquid nitrogen. extraction precipitation carried out according method "IGEPAL-TCA" described (30Krahmer Hindle S.F. Le Bihan Sample preparation thaliana.Methods Enzymol. 551: 405-431Crossref (5) Briefly, extracted precipitated TCA phase separation, then washed methanol acetone. total, 500 μg resuspended digested standard in-solution protocol peptides desalted. Before drying, eluted separated into two parts: 490 digest phosphopeptide enrichment, 10 saved analysis. Phosphopeptides enriched Titansphere spin tip kit (GL Sciences Inc) desalted BondElut Omix tips (Agilent) manufacturers' instructions. LC-MS/MS measurement subsequent previously Scholar): Dried dissolved μl (phosphoproteomics) 20 (global proteomics) 0.05% TFA passed through Millex-LH 0.45 μm (Millipore) filters. 8 run on-line capillary- HPLC-MSMS consisting micropump (1200 binary HPLC Agilent) coupled hybrid LTQ-Orbitrap XL instrument (Thermo-Fisher). Reverse-phase buffer LC-MS separation (2.5% acetonitrile, 0.1% FA H2O) B (10% H2O, 90% formic acid, 0.025% TFA). LC peptide initial 80 min linear gradient 0% 35% B, steeper up 98% over period min, remaining 15 until quick drop before end 120 min. Peak lists Progenesis software (version 4.1.4924.40586). tair Arabidopsis_1rep 20110103, 27,416 entries) database data-dependent detection, Mascot search engine 2.4), including sequences rank smaller 5. Search parameters follows: charges 2+, 3+ 4+, trypsin enzyme, allowing missed cleavages, carbamidomethyl (C) fixed modification, Oxidation (M), Phospho (ST) (Y), Acetyl(Protein N-term) variable modifications, tolerance 7 ppm, MS/MS 0.4 Da, 3+, ESI-trap instrument, decoy cutoff 20. cases, resulted false-discovery rate (FDR), less 5% exception (phosphoproteomics I: 3.5%, II: 3.2, 6.8%, 4.5%, calculated formula 2∗d/(n+d) (31Elias J.E. Gygi S.P. Target-decoy strategy spectrometry-based proteomics.Methods Mol. 2010; 604: 55-71Crossref (384) n d being number hits normal databases, respectively, score 20). Peptides area Progenesis, sum quantitation unique peptides. Where matched very multiple accession numbers shown exported results (supplemental Data S1 S2; Table 2).Table 2List CCA1-OX datasetsA. Phosphopeptides, WTAccessionDescriptionPeptide ID IPeptide IIPeptide sequencePhospho residue(s)p-value Ip-value IIq-value Iq-value IIPeak IPeak IIAT4G32340TPR-like superfam. pr.1566812823SASSLDLNLR39.5E-051.9E-095.7E-032.1E-061232AT2G33830DRM262462709TVAAVAGSPGTPTTPGSAR13/112.0E-022.0E-086.5E-028.9E-061240AT4G31700RPS6A86241785SRLSSAAAKPSVTA1,4,52.0E-062.8E-074.9E-043.9E-052424778SRLSSAAAKPSVTA1,4,5/1,4,112.0E-062.4E-084.9E-048.9E-06242421SRLSSAAAKPSVTA1,4,5/1,42.0E-069.5E-074.9E-041.1E-04242424893985LSSAAAKPSVTA91.5E-033.6E-032.1E-021.2E-013248AT5G10360RPS6B41, 173628SRLSSAPAKPVAA4/1, 47.4E-034.8E-074.0E-025.9E-053224AT3G47470CAB4715636DLSFTSIGSSAK31.3E-061.6E-074.9E-043.0E-052832AT3G07650COL9818211184AGEAYDYDPLTPTRSY153.0E-032.4E-072.7E-023.8E-052440AT5G48250BBX81103316261SGEAYDYDPMSPTRSY15/167.4E-031.6E-064.0E-021.6E-042440AT1G69870NRT1.771428476ISSPGSILDAEK31.7E-043.0E-066.8E-032.8E-042448AT5G40890CLC-A17831852HRTLSSTPLALVGAK3, 55.1E-051.1E-044.0E-037.3E-032424AT5G53420CCT101.19501997LGAGLVQSPLDR86.0E-031.1E-043.6E-027.3E-032848AT5G20670DUF167742025127TSSSGALPGIDGVESR3/41.9E-031.6E-042.3E-021.0E-022848AT1G73980TTM1100018639LSLDDDTVSSPK101.7E-021.9E-045.9E-021.1E-022824AT1G78020FLZ610297, 17003249, 1093LLSMVTPR31.3E-052.1E-041.5E-031.2E-0224242081, 5542, 55422113, 737, 2081RHSGDFSDAGHFLR32.4E-021.5E-037.4E-026.2E-022424AT1G11310MLO214963909SVENYPSSPSPR7/8, 102.3E-041.9E-037.7E-036.9E-023224AT2G32240PICC58837383DIDLSFSSPTKR81.1E-024.0E-034.9E-021.3E-012448AT3G13290VCR41406826TLSYPTPPLNPQSPR133.0E-035.4E-032.7E-021.6E-012848AT4G35100PIP3A140214ALGSFRSNATN4, 71.1E-028.0E-034.9E-021.9E-012824AT5G38640NagB/RpiA/CoA transferase-like pr.46831690DFPDGSTTASPGR106.0E-038.8E-033.6E-022.0E-013224AT1G37130NIA243822045, 2045VHDDDEDVSSEDENETHNSNAVYYK9, 109.0E-048.8E-031.7E-022.0E-012828AT3G13530MAPKKK735156312SKLPLVGVSSFR103.0E-038.8E-032.7E-022.0E-012840AT1G35580CINV19031066SVLDTPLSSAR5, 81.7E-029.7E-035.9E-022.1E-012424AT1G74780Major Facilitator Superfam. pr.62794702, 5728TVPHDYSPLISSPK123.0E-039.7E-032.7E-022.1E-012848AT3G27700zinc finger fam. pr.95639073LDTASDSGAAIASPK134.8E-031.1E-023.4E-022.2E-012848AT5G65010ASN249754842AGSDLVDPLPK36.9E-041.3E-021.6E-022.4E-012824AT4G31160DCAF1, DDB1-CUL4 187547154, 8583VHEGAPDTEVLLASPR143.5E-021.3E-029.3E-022.4E-012848AT4G13510AMT1;1214110SPSPSGANTTPTPV13.5E-021.4E-029.3E-022.5E-013248AT5G23660SWEET121480617187LGTLTSPEPVAITVVR69.1E-031.8E-024.3E-023.0E-012440AT3G26730RING/U-box pr.57946017NQTQSLSPPDVSR71.3E-042.2E-026.2E-033.5E-012424AT4G20910HEN11564813859, 13859SSSPNVFAAPPILQK3/2, 39.5E-052.6E-025.7E-033.7E-012824AT2G07360TASH32769, 50859464, 8286YQSTYEGYGSPIREEPPPPYSYSEPQSR101.1E-022.6E-024.9E-023.7E-012436AT4G26130unknown pr.5416, 7652, 15187456TTSIGDGGEEGVDDKASNFINK(FK)31.4E-022.6E-025.3E-023.7E-012440AT1G44800nodulin MtN21737734568SQELPITNVVK14.4E-062.6E-026.5E-043.7E-012852AT2G46920POL784811608SNFSAPLSFR81.9E-033.1E-022.3E-024.1E-012840AT2G42600, AT3G14940PPC2/PPC31672, 5762, 40, 4070MASIDAQLR37.4E-034.0E-024.0E-024.7E-013224AT3G60240EIF4G15851579QVLQGPSATVNSPR123.8E-034.3E-023.0E-024.9E-012848AT1G70770DUF2359514169, 800MTAIDSDDDGVVR67.4E-034.3E-024.0E-024.9E-012448AT5G40890, AT3G27170CLC-A/CLC-B749406TLSSTPLALVGAK31.3E-044.3E-026.2E-034.9E-012848AT4G12770, AT4G12780AUXILIN-LIKE 1/2.238, 238318FENVFSSISSSPTK116.0E-034.7E-023.6E-025.2E-012848B. CCA1-OXAccessionDescriptionPeptide I (h)Peak (h)AT2G33830DRM21348, 432812709TVAAVAGSPGTPTTPGSAR110.0230.0069111224AT1G51805SIF326172514, 1136VEGTLPSYMQASDGRSPR160.0190.021112424C. CCA1-OX, 12–20 hAccessionDescriptionPeptide (h)AT1G77760NIA147761968SVSSPFMNTASK30.0130.000670.420.252448AT2G45820REMORIN 1.31234, 5319698, 2343ALAVVEKPIEEHTPK130.0190.00450.420.682424D. Global proteomics, WTAccessionDescriptionp-value (h)AT4G39800MI-1-P SYNTHASE6.22E-068.7E-120.00595.78E-092824AT4G17090BAM30.00564.6E-050.230.0152044AT5G13630GUN50.0300.000100.430.0283252AT1G78570RHM10.000450.000590.0710.0872848AT1G15820LHCB60.0440.0230.520.931236AT5G54190 AT4G27440PORA PORB0.000250.0300.06511236AT3G08940 AT2G40100LHCB4.2 LHCB4.30.00130.0210.160.881236AT2G05070 AT2G05100LHCB2.2 LHCB2.10.0130.000320.310.0621232E. CCA1-OXAccessionDescriptionp-value (h)AT3G47070Unknown0.0340.0120.630.912040AT3G49190O-acyltransferase pr.0.00160.0220.240.923244AT4G39800MI-1-P SYNTHASE0.000370.034060.180.992424AT1G08200 AT2G27860AXS2 AXS10.00560.00260.350.562044Abbreviations: fam., family; pr, protein.All p-values analysis, q-values BH-corrected p-values.In phosphopeptides, location residues differs slightly between datasets (shifted 1–2 phosphates missing), case, noted I/dataset II).Bold denotes difference h. Open table new tab Abbreviations: protein. All p-values. Bold order remove duplicates due alternative modifications other qpMerge (32Hindle Krahmer Noordally Z.B. Simpson T.I. qpMerge: Merging isoforms motif centric strategy.bioRxiv. ([preprint])https://doi.org/10.1101/047100Crossref publicly available pep2pro (33Baerenfaller Svozil Hull Russenberger Bischof Lu Baginsky pep2pro: tool comprehensive reveal about organ-specific thaliana.Integr. (Camb). 3: 225-237Crossref (61) http://fgcz-pep2pro.uzh.ch (Assembly names "ed.ac.uk I," II," II") deposited ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via PRIDE partner repository (34Vizcaíno Deutsch provides globally coordinated submission dissemination.Nat. Biotechnol. 32: 223-226Crossref (1998) identifier PXD009230. Exported.csv files quantifications online suppl
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (90)
CITATIONS (24)