Development and evaluation of in murine model, of an improved live-vaccine candidate against brucellosis from to Brucella melitensis vjbR deletion mutant
Attenuated vaccine
DOI:
10.1016/j.micpath.2018.08.052
Publication Date:
2018-08-25T02:48:02Z
AUTHORS (11)
ABSTRACT
Brucellosis is an infectious disease that brings enormous economic burdens for developing countries. The Brucella melitensis (B. melitensis) M5-90 vaccine strain (M5-90) has been used on a large scale in China, but may cause abortions if given to pregnant goats or sheep subcutaneously during the late stages of gestation. Moreover, the vaccine M5-90 cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent M5-90 vaccine is required. In this study, a vjbR mutant of M5-90 (M5-90ΔvjbR) was constructed and overcame these drawbacks. M5-90ΔvjbR strain showed reduced survival capability in murine macrophages (RAW 264.7) and BALB/c mice and induced high protective immunity in mice. In addition, M5-90ΔvjbR induced an anti-Brucella-specific immunoglobulin G (IgG) response and stimulated the expression of gamma interferon (INF-γ) and interleukin-4 (IL-4) in vaccinated mice. Furthermore, M5-90ΔvjbR induced IgG response and stimulated the secretion of IFN-γ and IL-4 in immunized sheep. Moreover, the VjbR antigen allowed serological differentiation between infected and vaccinated animals. These results suggest that M5-90ΔvjbR is an ideal live attenuated and efficacious live vaccine candidate against B. melitensis 16 M infection.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (16)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....