An insight into improvement of room temperature formaldehyde sensitivity for graphene-based gas sensors
Sulfonic acid
Nanosensor
DOI:
10.1016/j.microc.2020.105607
Publication Date:
2020-10-08T11:42:48Z
AUTHORS (9)
ABSTRACT
Abstract The room temperature formaldehyde (HCHO) sensor has promising application in practical indoor air pollution detection. In this study, we assembled ZnO nanoparticles modified graphene nanosheets with dipoles by a facile solution process to fabricate a room temperature formaldehyde sensing material zinc oxide-(5-aminonaphthalene-1-sulfonic acid)-reduced graphene oxide (ZnO-ANS-rGO). The prepared ZnO-ANS-rGO sensor could detect as low as 5 ppm HCHO at room temperature. The following inverstigation showed that the outstanding gas sensing performances including high gas selectivity and reliable gas sensing reversibility were attributed to the synergism of modification of 5-aminonaphthalene-1-sulfonic acid (ANS) and ZnO nanoparticles. It was concluded that ANS greatly facilitated the charge transfer from compound to formaldehyde molecules so that the detection could be implemented at lower energy barrier.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (55)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....