Synthesis of magnetic yolk-shell mesoporous carbon architecture for the effective adsorption of sulfamethazine drug
Carbon fibers
DOI:
10.1016/j.micromeso.2017.07.027
Publication Date:
2017-07-16T02:45:15Z
AUTHORS (8)
ABSTRACT
Abstract In this work, Fe3O4@C yolk-shell carbon architecture were fabricated in one pot sol-gel process and further examined as adsorbents for the removal of sulfamethazine. To understand yolk-shell structure on the adsorption properties of sulfamethazine, another adsorbent without hollow cavity, i.e., Fe3O4@SiO2@C carbon material, was also prepared for comparison. The adsorption results showed the yolk-shell carbon materials complied with the pseudo-second order kinetics model. Based on the Langmuir model the yolk shell material possess a Qmax of 312 mg g−1, which is higher than that of core-shell materials (236 mg g−1). Due to the magnetic property, the yolk-shell carbon materials can be retrieved facilely from the aqueous media by an external magnet and 89.1% of recovery can be achieved over five adsorption desorption cycles. Possessing high surface area, a well-defined interface of the material and central cavity the as-prepared material has proved to be a potentially eminent adsorbent for the broad scale removal of sulfamethazine from industrial processes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (34)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....