Structure and Activity of the N-Terminal Substrate Recognition Domains in Proteasomal ATPases
Adenosine Triphosphatases
Models, Molecular
0301 basic medicine
Proteasome Endopeptidase Complex
Archaeal Proteins
Molecular Sequence Data
Computational Biology
Cell Biology
Protein Structure, Tertiary
Substrate Specificity
03 medical and health sciences
Bacterial Proteins
Sequence Analysis, Protein
Archaeoglobus fulgidus
Rhodococcus
Amino Acid Sequence
Molecular Biology
Sequence Alignment
DOI:
10.1016/j.molcel.2009.04.030
Publication Date:
2009-05-29T17:37:27Z
AUTHORS (8)
ABSTRACT
The proteasome forms the core of the protein quality control system in archaea and eukaryotes and also occurs in one bacterial lineage, the Actinobacteria. Access to its proteolytic compartment is controlled by AAA ATPases, whose N-terminal domains (N domains) are thought to mediate substrate recognition. The N domains of an archaeal proteasomal ATPase, Archaeoglobus fulgidus PAN, and of its actinobacterial homolog, Rhodococcus erythropolis ARC, form hexameric rings, whose subunits consist of an N-terminal coiled coil and a C-terminal OB domain. In ARC-N, the OB domains are duplicated and form separate rings. PAN-N and ARC-N can act as chaperones, preventing the aggregation of heterologous proteins in vitro, and this activity is preserved in various chimeras, even when these include coiled coils and OB domains from unrelated proteins. The structures suggest a molecular mechanism for substrate processing based on concerted radial motions of the coiled coils relative to the OB rings.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (111)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....