CENP-B-mediated DNA loops regulate activity and stability of human centromeres
0301 basic medicine
chromosomes
secondary structures
DNA compaction
optical tweezers
Chromosomal Proteins, Non-Histone
Centromere
612
DNA
Autoantigens
Chromatin
DNA topology
03 medical and health sciences
centromere
Humans
DNA breaks
AFM microscopy
CENP
genome stability
Centromere Protein A
DOI:
10.1016/j.molcel.2022.02.032
Publication Date:
2022-03-22T14:28:24Z
AUTHORS (14)
ABSTRACT
Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (97)
CITATIONS (43)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....