A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair
Biocompatible
OSTEOGENIC DIFFERENTIATION
BIOACTIVE GLASSES
QD Chemistry / kémia
RANELATE
MESENCHYMAL STROMAL CELLS
Biocompatible Materials
01 natural sciences
Cell Line
Humans
Dimethylpolysiloxanes
Cell Proliferation
Osteoblasts
PROLIFERATION
SMALL-ANGLE SCATTERING
QD03 Inorganic chemistry / szervetlen kémia
IN-VITRO
0104 chemical sciences
Strontium
Delayed-Action Preparations
QD04 Organic chemistry / szerves kémia
SOL-GEL MATERIALS
Bone Substitutes
Calcium
Hybrid materials
GAMMA-IRRADIATION
STEM-CELLS
DOI:
10.1016/j.msec.2016.01.083
Publication Date:
2016-01-30T07:18:04Z
AUTHORS (7)
ABSTRACT
The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS-SiO2 have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS-SiO2-CaO-SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO2. Calcium and strontium were added using the respective acetates as sources, following a sol-gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (61)
CITATIONS (20)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....