Influence of deposition pressure on p-type a-Si:H window layer doped by trimethylboron for a-Si:H superstrate solar cell in plasma enhanced chemical vapor deposition
Deposition
DOI:
10.1016/j.mssp.2012.08.013
Publication Date:
2012-10-05T01:00:35Z
AUTHORS (6)
ABSTRACT
Abstract Wide bandgap (Eg) p-type window layer is very important for silicon based thin film solar cell to obtain high performance, especially high open-circuit voltage (VOC). In this work, the influence of the deposition pressure on the properties of p-type a-Si:H window layer doped by trimethylboron (TMB) in plasma enhanced chemical vapor deposition (PECVD) was investigated systematically by transmission, Raman, and Fourier transform infrared (FTIR) spectroscopies. As a result, high performance hydrogenated amorphous silicon (a-Si:H) p–i–n superstrate solar cell with VOC up to 927 mV was successfully achieved on Asahi Type-U SnO2:F coated glass. In this case, excellent wide bandgap p-type a-Si:H window layer was fabricated under a mild deposition condition, including a low hydrogen dilution ratio (H2/SiH4) of 20, a relatively high deposition temperature of 220 °C, which was also adopted for the i-layer and n-layer deposition, and a moderate deposition pressure of about 160 Pa. We think it is the compromise between wide Eg and good microstructure quality of the p-layer that brings about the good solar cell performance. Such p-type window layer will be very helpful for the fabrication of a-Si:H solar cell, especially of the cell finished in a single PECVD chamber, due to its mild deposition condition.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....