Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio
Tandem
DOI:
10.1016/j.nanoen.2021.106121
Publication Date:
2021-05-04T01:56:00Z
AUTHORS (8)
ABSTRACT
Abstract High power-to-weight ratio (PTWR) is an important figure-of-merit for high performance flexible/portable solar cells. Marrying advanced tandem junction design with three-dimensional (3D) Si nanowire (SiNW) framework enables a promising route to boost the PTWR. In this work, a radial tandem junction (RTJ) thin film solar cell has been demonstrated, for the first time, over SiNWs, which consist of radially deposited p-i-n multilayers with hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon germanium (a-SiGe:H) absorption layers in the outer and the inner junctions, respectively. The strong light trapping within the 3D SiNW framework allows for the use of a very thin a-SiGe:H (~45 nm) absorption layer to harvest efficiently the long wavelengths. The RTJ cells fabricated via a one-pump-down process in a single PECVD chamber, directly upon 15 µm thick aluminum foils demonstrate an excellent flexibility that can bend to 10 mm radius and achieve a record PTWR~1628 W/kg, and accomplish a high open-circuit voltage, filling factor and conversion efficiency of 1.2 V, 61.5% and 8.1% on glass, respectively, substantially improved compared to those accomplished by radial single junction cells. These results highlight the unique potential of 3D radial tandem technology to enable a new generation of high performance and durable flexible photovoltaics.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (58)
CITATIONS (26)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....