Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells
Charge carrier
Electron Mobility
DOI:
10.1016/j.nanoen.2023.108449
Publication Date:
2023-04-14T23:52:22Z
AUTHORS (19)
ABSTRACT
The crystallization behavior of perovskite films has a profound influence on the resulting defect densities, charge carrier dynamics and photovoltaic performance. Herein, we introduce ionic liquids into the perovskite component to tailor the crystal growth of perovskite films from a disordered to a preferential corner-up orientation and accordingly increase the charge carrier mobility to accelerate electron transport and extraction. Using time-resolved measurements, we probe the charge carrier generation, transport and recombination behavior in these films and related devices. We find the ionic liquid-containing samples exhibit lower defects, faster charge carrier transport and suppressed non-radiative recombination, contributing to higher efficiency and fill factor. Via operando grazing-incidence small- and wide-angle X-ray scattering measurements, we observe a light-induced lattice compression and grain fragmentation in the control devices, whereas the ionic liquid-containing devices exhibit a slight light-induced crystal reconstitution and stronger tolerance against illumination. Under ambient conditions, the non-encapsulated device with the pyrrolidinium-based ionic compound (Pyr$_{14}$BF$_4$) maintains 97% of its initial efficiency after 4368 h.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (41)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....