Comparison of neurobehavioral effects of methylmercury exposure in older and younger adult zebrafish (Danio rerio)

Aging Time Factors Neuroscience(all) Toxicology 01 natural sciences Article memory fish shuttle-box Active avoidance conditioning Memory Avoidance Learning Reaction Time Learning Animals Maze Learning Zebrafish 0105 earth and related environmental sciences Analysis of Variance learning Behavior, Animal Dose-Response Relationship, Drug Learning Disabilities Age Factors methylmercury Methylmercury Methylmercury Compounds zebrafish active avoidance conditioning Fish shuttle-box
DOI: 10.1016/j.neuro.2012.06.011 Publication Date: 2012-07-13T09:57:37Z
ABSTRACT
It is widely recognized that the nature and severity of responses to toxic exposure are age-dependent. Using active avoidance conditioning as the behavioral paradigm, the present study examined the effect of short-term methylmercury (MeHg) exposure on two adult age classes, 1- and 2-year-olds to coincide with zebrafish in relatively peak vs. declining health conditions. In Experiment 1, 2-year-old zebrafish were randomly divided into groups and were exposed to no MeHg, 0.15% ethanol (EtOH), 0.01, 0.03, 0.1, or 0.3 μM of MeHg (in 0.15% ethanol) for 2 weeks. The groups were then trained and tested for avoidance responses. The results showed that older zebrafish exposed to no MeHg or EtOH learned and retained avoidance responses. However, 0.01 μM or higher concentrations of MeHg exposure impaired avoidance learning in a dose-dependent manner with 0.3 μM of MeHg exposure producing death during the exposure period or shortly after the exposure but before the avoidance training. In Experiment 2, 1-year-old zebrafish were randomly divided into groups and were exposed to the same concentrations of MeHg used in Experiment 1 for 2 weeks. The groups were then trained and tested for avoidance responses. The results showed that younger zebrafish exposed to no MeHg, EtOH, or 0.01 μM of MeHg learned and retained avoidance responses, while 0.1 or 0.3 μM of MeHg exposure impaired avoidance learning in a dose-dependent manner. The study suggested that MeHg exposure produced learning impairments at a much lower concentration of MeHg exposure and more severely in older adult compared against younger adult zebrafish even after short exposure times.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....