PlexinA1 Signaling Directs the Segregation of Proprioceptive Sensory Axons in the Developing Spinal Cord
Afferent Pathways
Neuroscience(all)
DEVBIO
Mice, Transgenic
Nerve Tissue Proteins
Receptors, Cell Surface
Chick Embryo
Semaphorins
Ligands
Proprioception
MOLNEURO
Axons
RNA, Complementary
Posterior Horn Cells
Mice
Oligodendroglia
Electroporation
SIGNALING
Animals
Neurons, Afferent
In Situ Hybridization
Protein Binding
Signal Transduction
Skin
DOI:
10.1016/j.neuron.2006.10.032
Publication Date:
2006-12-07T18:04:38Z
AUTHORS (4)
ABSTRACT
As different classes of sensory neurons project into the CNS, their axons segregate and establish distinct trajectories and target zones. One striking instance of axonal segregation is the projection of sensory neurons into the spinal cord, where proprioceptive axons avoid the superficial dorsal horn-the target zone of many cutaneous afferent fibers. PlexinA1 is a proprioceptive sensory axon-specific receptor for sema6C and sema6D, which are expressed in a dynamic pattern in the dorsal horn. The loss of plexinA1 signaling causes the shafts of proprioceptive axons to invade the superficial dorsal horn, disrupting the organization of cutaneous afferents. This disruptive influence appears to involve the intermediary action of oligodendrocytes, which accompany displaced proprioceptive axon shafts into the dorsal horn. Our findings reveal a dedicated program of axonal shaft positioning in the mammalian CNS and establish a role for plexinA1-mediated axonal exclusion in organizing the projection pattern of spinal sensory afferents.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (110)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....