P.5.12 A mutation in TNPO3 causes LGMD1F and characteristic nuclear pathology
03 medical and health sciences
0302 clinical medicine
DOI:
10.1016/j.nmd.2013.06.464
Publication Date:
2013-08-28T16:41:34Z
AUTHORS (15)
ABSTRACT
Limb-girdle muscular dystrophy 1F (LGMD1F) is an autosomal dominant muscular disease affecting a Spanish family. Using whole genome sequencing, we identified a single nucleotide deletion (c.2771del) in transportin-3 gene ( TNPO3 ) in a LGMD1F patient. The mutation disrupts the termination codon of TNPO3 and causes a reading frame shift. Transportin-3 is a nuclear protein, and mediates import of serine–arginine rich proteins into nucleus, which is important for mRNA splicing. This study aimed to investigate the significance of transportin-3 in the pathogenesis of LGMD1F. We performed dideoxy-sequencing of TNPO3 in 24 affected and 23 unaffected family members. Muscle specimens from 4 patients were analyzed by conventional stains and immunohistochemistry. Direct sequence of TNPO3 revealed that all patients carried a heterozygous mutation, and none of the unaffected subjects had the mutation. Hematoxylin-eosin (HE) stained muscle revealed nuclei (10.7 ± 3.0%; mean ± SD) with central pallor in all patients studied. Immunohistochemistry with anti-transportin-3 antibody showed colocalization with nuclei in control subjects. In patients, transportin-3 was also observed within nuclei, but was often unevenly distributed in periphery, a staining pattern similar to that seen by HE. Genetic and histological studies in a Spanish family strongly support the hypothesis that TNPO3 is the causative gene of LGMD1F. Pathological study also indicates that the subcellular distribution of transportin-3 is disrupted and affects the structure of nuclei.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....