Role of p-MKK7 in myricetin-induced protection against intestinal ischemia/reperfusion injury
Flavonoids
Male
0303 health sciences
MAP Kinase Kinase 7
Protective Agents
Cell Line
3. Good health
Rats, Sprague-Dawley
03 medical and health sciences
Reperfusion Injury
Intestine, Small
Animals
RNA, Small Interfering
DOI:
10.1016/j.phrs.2017.11.011
Publication Date:
2017-11-16T16:00:44Z
AUTHORS (10)
ABSTRACT
Intestinal ischemia reperfusion (I/R) may cause inflammation-, oxidative stress-, and apoptosis-related tissue injuries and facilitate bacterial infection, leading to multiple organ failure. Myricetin, a flavonoid, is found to have diverse biological effects including anti-inflammatory, anti-oxidative, and anti-bacterial effects. Based on our pre-experiment, we proposed that myricetin pretreatment (25, 50mg/kg) could ameliorate intestinal I/R injury and myricetin-induced modulation on MKK7/JNK signal pathway might play a key role in the amelioration. The present study was designed to verify the proposal by using both rat intestinal I/R model in vivo and hypoxia/reoxygenation (H/R)-injured intestinal epithelial cell line (IEC-6 cells) model in vitro. The results confirmed our proposal. Myricetin selectively ameliorated I/R- and H/R-induced injuries in vivo and in vitro respectively without significantly affecting the corresponding normal controls. Myricetin significantly alleviated I/R-induced rat intestinal injury by reducing the generation of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6 and by reducing MPO activity. Myricetin significantly reduced oxidative stress through decreasing MDA level and increasing the levels of SOD and GSH in the intestinal tissues compared with I/R control rats. Myricetin significantly decreased apoptosis by selectively down-regulating the expression of p-MKK7 and p-JNK without affecting MKK7 and JNK, inhibiting Bax, caspase-3 protein expression, and up-regulating Bcl-2 protein expression in I/R-injured jejunum of rats. In vitro study indicated that MKK7 siRNA transfection significantly decreased both MKK7 and p-MKK7 and other apoptosis-related proteins, partially simulating myricetin-induced anti-apoptotic effects. MKK7 siRNA transfection+myricetin could not further decrease MKK7, p-MKK7, and other apoptosis-related proteins, suggesting that inhibition of MKK7/JNK pathway plays a key role in myricetin-induced protection against intestinal I/R. MKK7 overexpression by cDNA transfection abrogated myricetin-reduced apoptosis-related protein expression, confirming that the MKK7/JNK signal pathway is the key target for myricetin-induced amelioration. The present study indicated that pretreatment of myricetin induced selective protection against intestinal I/R injury without significantly affecting corresponding normal controls and p-MKK7 was the key target, suggesting that myricetin is worth further translational studies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (30)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....