Global exponential stability and existence of periodic solution of Hopfield-type neural networks with impulses
Hopfield network
DOI:
10.1016/j.physleta.2004.09.083
Publication Date:
2004-10-24T03:07:12Z
AUTHORS (2)
ABSTRACT
Abstract We use the continuation theorem of coincidence degree theory and Lyapunov functions to study the existence and global exponential stability of periodic solution for Hopfield-type model of neural network with impulses { d x i ( t ) d t = − a i ( t ) x i ( t ) + ∑ j = 1 m b i j ( t ) f j ( x j ( t ) ) + J i ( t ) , t > 0 , t ≠ t k , Δ x i ( t k ) = x i ( t k + ) − x i ( t k − ) = − γ i k x i ( t k ) , i = 1 , … , m , k = 1 , 2 , … , where a i ( t ) > 0 , b i j , J i : R → R , i , j = 1 , … , m , a i , b i j , J i ( i , j = 1 , … , m ) are functions of period ω > 0 , and there exists a positive integer q, such that t k + q = t k + ω , γ i ( k + q ) = γ i k > 0 . An illustrative example is given to demonstrate the effectiveness of the obtained results.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (13)
CITATIONS (90)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....