AI and extreme scale computing to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non-precessing black hole mergers
FOS: Computer and information sciences
I.2
Higher-order waveform modes
Black holes
Computer Science - Artificial Intelligence
Physics
QC1-999
FOS: Physical sciences
General Relativity and Quantum Cosmology (gr-qc)
68T10, 85-08, 83C35, 83C57
01 natural sciences
General Relativity and Quantum Cosmology
Artificial Intelligence (cs.AI)
AI
0103 physical sciences
High performance computing
Astrophysics - Instrumentation and Methods for Astrophysics
Instrumentation and Methods for Astrophysics (astro-ph.IM)
DOI:
10.1016/j.physletb.2022.137505
Publication Date:
2022-10-15T03:33:05Z
AUTHORS (3)
ABSTRACT
We use artificial intelligence (AI) to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non precessing binary black hole mergers. We trained AI models using 14 million waveforms, produced with the surrogate model NRHybSur3dq8, that include modes up to $\ell \leq 4$ and $(5,5)$, except for $(4,0)$ and $(4,1)$, that describe binaries with mass-ratios $q\leq8$, individual spins $s^z_{\{1,2\}}\in[-0.8, 0.8]$, and inclination angle $θ\in[0,π]$.Our probabilistic AI surrogates can accurately constrain the mass-ratio, individual spins, effective spin, and inclination angle of numerical relativity waveforms that describe such signal manifold. We compared the predictions of our AI models with Gaussian process regression, random forest, k-nearest neighbors, and linear regression, and with traditional Bayesian inference methods through the PyCBC Inference toolkit, finding that AI outperforms all these approaches in terms of accuracy, and are between three to four orders of magnitude faster than traditional Bayesian inference methods. Our AI surrogates were trained within 3.4 hours using distributed training on 1,536 NVIDIA V100 GPUs in the Summit supercomputer.<br/>22 pages, 12 figures<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....