Oriented structure and anisotropy properties of polymer blown films: HDPE, LLDPE and LDPE

02 engineering and technology 0210 nano-technology
DOI: 10.1016/j.polymer.2003.10.057 Publication Date: 2003-11-21T12:58:36Z
ABSTRACT
Abstract Different types of polyethylene blown films (HDPE, LDPE, LLDPE) differ significantly in the ratio between machine and transverse direction tear resistance. In this paper, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) blown films at different draw-down ratios are studied, and the relation between crystalline structure and anisotropy of blown film properties is investigated. The crystalline morphology and orientation of HDPE, LDPE, LLDPE blown films were probed using microscopy and infrared trichroism. Significant differences in crystalline morphology were found: at medium DDR HDPE developed a row-nucleated type morphology without lamellar twisting, LDPE showed rod-like crystalline morphology and turned out to the row-nucleated structure with twisted lamellae at high draw-down ratio (DDR), while a spherulite-like superstructure was observed for LLDPEs at all processing conditions. They also showed quite different orientation characteristics corresponding to different morphologies. The morphologies and orientation structure for LDPE, LLDPE and HDPE are related to the stress applied (DDR) and their relaxations in the flow-induced crystallization process, which determine the amount of fibrillar nuclei available at the time of crystallization and therefore, the final crystalline morphology. These structure differences are shown to translate into different ratios of machine and transverse direction tear and tensile strengths.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (27)
CITATIONS (189)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....