Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon)

13. Climate action 01 natural sciences 6. Clean water 0105 earth and related environmental sciences
DOI: 10.1016/j.scitotenv.2012.10.062 Publication Date: 2012-11-21T05:47:32Z
ABSTRACT
The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H(2)O(2), O(3)/AC, O(3)/H(2)O(2)) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1,080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O(3)/H(2)O(2) and O(3)/AC systems is faster than that with only O(3). The technologies based on AOPs (UV/H(2)O(2), O(3)/H(2)O(2), O(3)/AC) significantly improve the degradation of DEP compared to conventional technologies (O(3), UV). AC adsorption, UV/H(2)O(2), O(3)/H(2)O(2), and O(3)/AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O(3)/AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (97)