Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling

0106 biological sciences VARIATION SAISONNIERE Food Chain 550 UPWELLING North-West African upwelling 01 natural sciences [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ADVECTION MARINE DISPERSION POLLUTION MARINE PHOSPHATE Animals Seawater 14. Life underwater Phosphate industry [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography Ecosystem ACCUMULATION Plankton ecosystem ACL Fishes ZONE COTIERE BIOACCUMULATION Dispersion Plankton MODELISATION Bioaccumulation Mollusca 13. Climate action [SDV.EE.ECO]Life Sciences [q-bio]/Ecology MILIEU MARIN METAL LOURD POLLUTION CHIMIQUE [SDE.BE]Environmental Sciences/Biodiversity and Ecology environment/Ecosystems PLANCTON Water Pollutants, Chemical Cadmium
DOI: 10.1016/j.scitotenv.2014.10.045 Publication Date: 2014-11-07T22:46:44Z
ABSTRACT
A Lagrangian approach based on a physical-biogeochemical modeling was used to compare the potential transfer of cadmium (Cd) from natural and anthropogenic sources to plankton communities (Cd-uptake) in the North-West African upwelling. In this region, coastal upwelling was estimated to be the main natural source of Cd while the most significant anthropogenic source for marine ecosystem is provided by phosphate industry. In our model experiment, Cd-uptake (natural or anthropogenic) in the North-West African upwelling is the result of an interplay between the Cd dispersion (by advection processes) and the simulated biological productivity. In the Moroccan waters, advection processes limit the residence time of water masses resulting in a low natural Cd-uptake by plankton communities while anthropogenic Cd-uptake is high. As expected, the situation is reversed in the Senegalo-Mauritanian upwelling where natural Cd-uptake is higher than anthropogenic Cd-uptake. Based upon an estimate of Cd sources, our modeling study shows, unexpectedly, that the anthropogenic signal of potential Cd-bioaccumulation in the Moroccan upwelling is of the same order of magnitude as the natural signal mainly present in the Senegalo-Mauritanian upwelling region. A comparison with observed Cd levels in mollusk and fishes, which shows overall agreement with our simulations, is confirming our estimates.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (112)
CITATIONS (41)