Complementarity of three distinctive phytoremediation crops for multiple-trace element contaminated soil

sol contamine [SDV]Life Sciences [q-bio] trace elements medicago sativa phytoremediation 630 nitrogen plante assainissante monoculture salix single crop farming 580 polycultures azote 2. Zero hunger élément trace functional complementarity trace element tall fescue soil remediation 04 agricultural and veterinary sciences 15. Life on land 6. Clean water 3. Good health polyculture 0401 agriculture, forestry, and fisheries ecology festuca arundinacea
DOI: 10.1016/j.scitotenv.2017.08.196 Publication Date: 2017-08-31T00:01:12Z
ABSTRACT
Trace element (TE) contaminated land represents an important risk to the environment and to human health worldwide. These soils usually contain a variety of TEs which can be a challenge for plant-based remediation options. As individual plant species often possess a limited range of TE remediation abilities, functional complementarity principles could be of value for remediation of soil contaminated by multiple TEs using assemblages of species. Monocultures and polycultures of Festuca arundinacea, Medicago sativa and Salix miyabeana were grown for 4months in aged-polluted soil contaminated by Ag, As, Cd, Cr, Cu, Pb, Se and Zn. Above and belowground biomass yields, root surface area (RSA) and TE tissue concentrations were recorded. In monoculture, the greatest aboveground biomass was produced by S. miyabeana (S), the greatest belowground biomass was from M. sativa (M) and F. arundinacea (F) produced the highest RSA. The polycultures of F+M, F+S and F+M+S produced among the highest values across all three traits. F. arundinacea monoculture and its combination with S. miyabeana (F+S) accumulated the highest amounts of total TEs in belowground tissues, whereas the most effective combination (or monoculture) for aboveground extraction yields varied depending on the TE considered. The crops demonstrated complementarity in their biomass allocation patterns as well as facilitative interactions. When considering contamination with a particular TE, the best phytomanagement approach could include a specific monoculture option; however, when above and belowground biomass allocation patterns, TE-remediation abilities as well as nitrogen accessibility are considered, co-cropping all three species (F+M+S) was the most robust scenario for remediation of multiple-TE contaminated land. By more effectively addressing a diversity of TE, species assemblage approaches could represent an important advancement towards enabling the use of plants to address contaminated-land issues worldwide.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (71)
CITATIONS (52)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....