Insight into the photochemistry of atmospheric oxalate through hourly measurements in the northern suburbs of Nanjing, China

13. Climate action 7. Clean energy 01 natural sciences 0105 earth and related environmental sciences
DOI: 10.1016/j.scitotenv.2020.137416 Publication Date: 2020-02-19T02:48:09Z
ABSTRACT
Oxalate-iron is an integral part of the photochemical system in the atmosphere. Here, we combined high-resolution online observations and laboratory simulations to discuss the distribution of oxalate and oxalate-iron photochemical system in Nanjing atmosphere at the molecular level. The results show that the oxidation state of iron in the oxalate-iron photochemical system changes significantly and regularly. Among them, Fe (II)/Fe (III) is 3.82 during the day and 0.76 at night. At the same time, Cl- may accelerate the generation of hydroxyl radicals in the system and promote the photooxidation rate of oxalate. Oxalate can be converted into formate (C1) and acetate (C2) in the photochemical system, but <4% of degraded oxalate is converted, which means that the photochemical system may not be the main source of formate and acetate in the atmosphere. Besides, the ratio of C1/C2 < 1 in the conversion is opposite to the ratio of C1/C2 > 1 in the general secondary conversion, which means that not all ratio of C1/C2 in the photochemical pathway is >1. These results are beneficial for us to understand the effect of the oxalate-iron photochemical system on the distribution of oxalate in the atmosphere, and also help us to analyze the conversion of organics in the atmospheric aqueous phase.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (74)
CITATIONS (9)