Identification, interactions, nitrogen removal pathways and performances of culturable heterotrophic nitrification-aerobic denitrification bacteria from mariculture water by using cell culture and metagenomics

Bacteria Nitrogen Water Heterotrophic Processes Wastewater Nitrification 01 natural sciences Aerobiosis 6. Clean water 13. Climate action Denitrification Metagenomics 14. Life underwater 0105 earth and related environmental sciences
DOI: 10.1016/j.scitotenv.2020.139268 Publication Date: 2020-05-08T01:40:48Z
ABSTRACT
The rapid expansion of aquaculture industry brings about significant environmental concerns, especially nitrogen pollution. Compared to nitrogen bioconversion implemented by the conventional autotrophic nitrifiers and anaerobic denitrifiers, bacteria capable of heterotrophic nitrification-aerobic denitrification (HNAD) in mariculture environments have yet to be well understood. In this study, twenty-five species of new halophilic HNAD bacteria were isolated and identified from mariculture water. By these strains co-cultured in the synthetic mariculture water (ammonia: 5 mg/L, C/N: 5, salinity: 30‰), microbial dynamic analysis showed that ammonia were mainly removed by dominant genera of Marinomonas, Marinobacterium, Halomonas, and Cobetia which simultaneously had positive correlations to total nitrogen removal. Metagenomic annotations revealed that inorganic-N was converted into gaseous-N and organic-N by these HNAD bacteria through nitrogen metabolism pathways of assimilation, partial nitrification, nitroalkane oxidation, nitrate/nitrite dissimilation reduction, and denitrification. Among them, due to the interspecific coexistence and cooperation, Marinomonas communis &Halomonas titanicae, Marinomonas communis &Cobetia marina, Marinomonas aquimarina &Halomonas titanicae, and Marinomonas aquimarina &Cobetia marina exhibited significantly better inorganic-N removal efficiency and stability. The four novel bacterial consortia could transform approximately 60% of initial ammonia into intracellular organic-N (18-20%) and gaseous-N (36-38%), which were significantly higher than those of their single strains. These findings will contribute to understanding and developing the culturable HNAD bacteria as promising candidates for nitrogen pollution control and water bioremediation in mariculture or other saline environments.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (71)