Effects of excessive nitrogen on nitrogen uptake and transformation in the wetland soils of Liaohe estuary, northeast China
2. Zero hunger
China
0303 health sciences
Nitrogen
15. Life on land
6. Clean water
Soil
03 medical and health sciences
Rivers
13. Climate action
Wetlands
Estuaries
Soil Microbiology
DOI:
10.1016/j.scitotenv.2021.148228
Publication Date:
2021-06-02T16:03:42Z
AUTHORS (7)
ABSTRACT
It remains unclear whether excessive nitrogen additions lead to the degradation of Suaeda salsa (S. salsa) by affecting the nitrogen pool, enzyme activities, and bacterial community structure of wetland soils. This study investigated the effect of five added nitrogen concentrations (0, 1, 2, 4, and 6 mmol L-1 N with NH4NO3 = group C, group L, group M, group H, and group G, respectively) on nitrogen uptake by S. salsa and nitrogen transformation in the wetland soils of the Liaohe estuary. The height, weight, and total nitrogen (TN) of S. salsa in group G was significantly lower than in the other groups (p <0.05). The NH4+-N concentration in the soil tended to increase with increasing nitrogen addition, but the TN concentration in the soil tended to decrease. The nitrogenase, protease, urease, ammonia monooxygenase (AMO), nitrous oxide reductase (NOR), and dehydrogenase (DHA) activities increased with increasing nitrogen addition within the range of 0 to 4 mmol L-1. We identified 30 phyla and 48 known genera across all five groups. The predominant phyla were Proteobacteria (52.68%), Bacteroidetes (22.58%), and Planctomycetes (3.94%). The most abundant genus was Acinetobacter (13.38%), followed by Proteiniphilum (11.88%) and Brevundimonas (6.03%). The total number of soil bacterial species increased with increasing nitrogen addition. Group G had lower soil bacterial activity and diversity than the other groups. It was concluded that appropriate levels of nitrogen addition could promote nitrogen uptake by S. salsa and nitrogen transformation in the wetland soils of the Liaohe estuary by affecting soil enzyme activities and soil bacterial activity, diversity, abundance, and composition, while excessive nitrogen additions may be one of the reasons for the degradation of S. salsa.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (64)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....