Particulate matter and volatile organic compound phytoremediation by perennial plants: Affecting factors and plant stress response
Proteomics
2. Zero hunger
Air Pollutants
Volatile Organic Compounds
Biodegradation, Environmental
13. Climate action
11. Sustainability
0401 agriculture, forestry, and fisheries
Particulate Matter
04 agricultural and veterinary sciences
15. Life on land
6. Clean water
DOI:
10.1016/j.scitotenv.2021.148779
Publication Date:
2021-07-01T07:22:11Z
AUTHORS (8)
ABSTRACT
Air pollution by particulate matter (PM) and volatile organic compounds (VOCs) is a major global issue. Many technologies have been developed to address this problem. Phytoremediation is one possible technology to remediate these air pollutants, and a few studies have investigated the application of this technology to reduce PM and VOCs in a mixture of pollutants. This study aimed to screen plant species capable of PM and VOC phytoremediation and identify plant physiology factors to be used as criteria for plant selection for PM and VOC phytoremediation. Wrightia religiosa removed PM and VOCs. In addition, the relative water content in the plant and ethanol soluble wax showed positive relationships with PM and VOC phytoremediation, with a high correlation coefficient. For plant stress responses, several plant species maintained and/or increased the relative water content after short-term exposure to PM and VOCs. In addition, based on proteomic analysis, most of the proteins in W. religiosa leaves related to photosystems I and II were significantly reduced by PM2.5. When a high water content was achieved in W. religiosa (80% soil humidity), W. religiosa can effectively remove PM. The results suggested that PM can reduce plant photosynthesis. In addition, plants might require a high water supply to maintain their health under PM and VOC stress.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (63)
CITATIONS (31)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....