Microbial production of an aromatic homopolyester

DOI: 10.1016/j.tibtech.2024.06.001 Publication Date: 2024-08-22T18:28:59Z
ABSTRACT
We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (81)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....